
Generic Monadic Constructs for Embedded
Languages

Anders Persson1,2, Emil Axelsson1, and Josef Svenningsson1

1 Chalmers University of Technology
{anders.persson,emax,josefs}@chalmers.se

2 Ericsson

Abstract. We present a library of generic monadic constructs for em-
bedded languages. It is an extension of Syntactic, a Haskell library for
defining and processing generic abstract syntax. Until now, Syntactic has
been mostly suited to implement languages based on pure, side effect free,
expressions. The presented extension allows the pure expressions to also
contain controlled side effects, enabling the representation of expressions
that rely on destructive updates for efficiency. We demonstrate the use-
fulness of the extension by giving examples from the embedded language
Feldspar which is implemented using Syntactic.

1 Introduction

A domain specific language (DSL) is a programming language dedicated to a
particular domain. The purpose of a DSL is often to allow a problem or solution
to be expressed more clearly and efficiently than a general purpose language
would allow. Haskell has a long history of being a host language for embedded
DSLs, where the DSL is implemented as a library in the host language [8, 7].

One such language is Feldspar [5, 4]. Feldspar is a domain specific language
for programming performance sensitive embedded systems with focus on digital
signal processing. The language is a strongly typed language with pure semantics
and support for both scalar and vector computations. As is common for deeply
embedded DSLs, a Feldspar program results in an intermediate representation
or abstract syntax tree (AST). For code generation purposes, the AST is then
translated into some other language, e.g. C or LLVM assembler, suitable for the
target device and compiler. Other interpretations of the AST include, but are
not limited to, evaluation, static profiling for memory use and pretty printing.

Different embedded languages often contain similar syntactic constructs. For
example, most languages have a notion of variable binding, literals, conditional
expressions, etc. In addition, most languages have similar functions for semantic
interpretation and transformation. Examples of such functions include evaluation
and constant folding. To assist the implementation of embedded languages and
enable reuse of common implementation aspects, we have developed Syntactic.

Syntactic is a Haskell library [6, 3] for defining generic abstract syntax, and
a set of utilities for building embedded languages based on this syntax. By using

an encoding of data types open to extension, Syntactic provides mechanisms for
assembling individual constructs (e.g. literals, tuples, binding, etc) into larger
languages. By basing an embedded language on Syntactic, the language becomes
modular and open to extension with new syntax elements, front-end combinator
libraries and backend interpretation and compilation functions.

1.1 Problem Description

Syntactic works best to implement languages based on pure expressions, i.e com-
putations that are free of side effects. However, this purity makes it impossible
to efficiently express algorithms that, for performance, rely on destructive up-
dates of data. The problem manifests itself in both extra memory for storing
intermediate results and extra execution time for copying data between inter-
mediate storage locations. A sophisticated compiler might mitigate the problem
somewhat by performing lifetime analysis on the data and optimizing the data
structures. Still, the compiler can only apply the optimizations when conditions
are right and it might be difficult for the programmer to predict when the opti-
mizations will kick in. This is especially true in a large system where the parts
are developed individually and conditions vary with the use site of a function.
Furthermore, it is desirable to give the programmer more control of when certain
values can be overwritten as long as it can be done while preserving the overall
referential transparency provided by pure semantics.

As an example, consider the function iter. This Feldspar function generates
a syntax tree by repeatedly applying the function f. Note that the first argument
to iter is a regular Haskell value which is evaluated as part of the generation.
Thus, iter 4 f is equivalent to f ◦ f ◦ f ◦ f.

import Feldspar
import Feldspar.Compiler

iter :: (Type a) ⇒ Length → (Data a → Data a) → Data a → Data a
iter 0 _ = id
iter n f = f ◦ iter (n-1) f

ex :: Data Int32 → Data Int32
ex = iter 4 (λx → x + x)

Using the Feldspar Compiler, we can generate the code below by evaluating
icompile ex. Here, we can see that the result of each function application (v1,
v2 and v3) is stored in its own location, even though the individual results are
not needed later than the next statement. This extra storage becomes more
problematic when the results are of a more complex type, e.g structures or
arrays, where the cost of storing and copying cannot be neglected. Instead, we
want the generated code to eliminate as many storage locations as possible and
destructively update the remaining locations.

void ex(int32_t v0, int32_t * out)
{

int32_t v1;
int32_t v2;
int32_t v3;

v1 = (v0 + v0);
v2 = (v1 + v1);
v3 = (v2 + v2);
(* out) = (v3 + v3);

}

A well-known method of expressing impure computations in a pure functional
language is to use monads [15]. In this paper we present an extension to Syntactic
that provides generic monadic constructs for use in deeply embedded languages.
In order to add support for destructive updates in languages like Feldspar, we
also provide specialized constructs for mutable references and arrays.

1.2 Contributions

This paper makes the following contributions:

– We show how to implement monadic combinators (in particular, return and
(>>=)) as deeply embedded language constructs (section 3). By basing the
implementation on the Syntactic framework, we make the constructs avail-
able to other languages based on Syntactic. This extension makes Syntactic
applicable to a wider range of EDSLs.

– We avoid the common problem of defining a Monad instance for the embed-
ded language by using a continuation monad wrapper around the embedded
expressions (section 3.2). This allows us to use Haskell’s do-notation and ex-
isting monadic combinators together with DSL programs. To our knowledge,
this is a novel technique, and it has a great impact on the usability of the
resulting DSLs.

– We show how to implement monadic language constructs, based on available
Haskell types, to deal with destructive updates of data (section 4). These
constructs give a pragmatic solution to the problem of expressing destructive
updates in Feldspar programs.

It is worth noting that all of this was done without having to change the
Syntactic framework or the existing Feldspar implementation. This serves as a
great example of the modularity provided by Syntactic (see section 2.2).

The code in this paper is based on Syntactic, version 0.8 [3]. The Feldspar
code is based on version 0.5 [2, 1].

2 Introduction to Syntactic

When implementing deeply embedded DSLs in Haskell, a syntax tree is typically
defined using a (generalized) algebraic data type [7, 4, 12]. As an example,
consider a small expression language with support for literals and addition:

-- A simple expression langugage
data Expr1 a where

Lit1 :: Num a ⇒ a → Expr1 a
Add1 :: Num a ⇒ Expr1 a → Expr1 a → Expr1 a

Expr1 a is parameterized on the type of the value computed by the expression.
It is easy to add a user friendly interface to this language by adding smart
constructors and interpretation functions.

lit1 :: Int → Expr1 Int
lit1 x = Lit1 x

add1 :: Expr1 Int → Expr1 Int → Expr1 Int
add1 x y = Add1 x y

eval1 :: Expr1 Int → Int
eval1 (Lit1 x) = x
eval1 (Add1 x y) = eval1 x + eval1 y

In this case, the smart constructors only serve to hide implementation details
and constrain the type, but in later implementations they will also take care of
some tedious wrapping.

The eval1 function is just one possible interpretation of the expressions; we
can extend the implementation with, say, pretty printing or program analysis.
This can even be done without changing any existing code. However, adding
a new construct to the language is not so easy. To extend the language with
multiplication, we would need to add a constructor to the Expr1 type as well as
adding a new case to eval1 (and other interpretations). Thus, with respect to
language extension, a GADT representation of a language is not modular. This
limitation is one side of the well-known expression problem [14].

There are several reasons why modularity is a desired property of a language
implementation. During the development phase, it makes it easier to experiment
with new language constructs. It also allows constructs to be developed and
tested independently, simplifying collaboration. However, there is no reason to
limit the modularity to a single language implementation. For example, Lit1 and
Add1 are conceptually generic constructs that might be useful in many different
languages. In an ideal world, language implementations should be assembled
from a library of generic building blocks in such a way that only the truly
domain-specific constructs need to be implemented for each new language.

The purpose of the Syntactic library [3] is to provide a basis for such modular
languages. The library provides assistance for all aspects of an embedded DSL
implementation:

– A generic AST type that can be customized to form different languages.
– A set of generic constructs that can be used to build custom languages.
– A set of generic functions for interpretation and transformation.
– Generic functions and type classes for defining the user interface of the DSL.

For more information about Syntactic, see our lecture notes from the CEFP
summer school [6].

data AST dom a where
Sym :: Signature a ⇒ dom a → AST dom a
(:$) :: Typeable a ⇒ AST dom (a :→ b) → AST dom (Full a) → AST dom b

type ASTF dom a = AST dom (Full a)

newtype Full a = Full { result :: a }
newtype a :→ b = Partial (a → b)

infixl 1 :$
infixr :→

class Signature a
instance Signature (Full a)
instance Signature b ⇒ Signature (a :→ b)

Listing 1: Type of generic abstract syntax trees in Syntactic

2.1 Using Syntactic

The idea of the Syntactic library is to express all syntax trees as instances
of a very general type AST3, defined in listing 1. Sym introduces a constructor
from the domain dom, and (:$) applies such a constructor to one argument. By
instantiating the dom parameter with different types, it is possible to use AST to
model a wide range of algebraic data types. Even GADTs can be modeled.

To model our previous expression language using AST, we rewrite it as follows:

data NumDomain2 a where
Lit2 :: Num a ⇒ a → NumDomain2 (Full a)
Add2 :: Num a ⇒ NumDomain2 (a :→ a :→ Full a)

type Expr2 a = ASTF NumDomain2 a

In this encoding, the types Expr1 and Expr2 are completely isomorphic (up to
strictness properties). The correspondence can be seen by reimplementing our
smart constructors for the Expr2 language:

lit2 :: Int → Expr2 Int
lit2 a = Sym (Lit2 a)

add2 :: Expr2 Int → Expr2 Int → Expr2 Int
add2 x y = Sym Add2 :$ x :$ y

The implementation of eval2 is left as an exercise to the reader. Note that,
in contrast to Add1, the Add2 constructor is non-recursive. Types based on AST

normally rely on (:$) to handle all recursion.

3 The Typeable constraint on the (:$) constructor is from the standard Haskell mod-
ule Data.Typeable, which, among other things, provides a type-safe cast operation.
Syntactic uses type casting to perform certain syntactic transformations whose type-
correctness cannot be verified by the type system. The Typeable constraint on (:$)

leaks out to functions that construct abstract syntax, which explains the occur-
rences of Typeable constraints throughout this paper. It is possible to get rid of the
constraint, at the cost of making certain AST functions more complicated.

2.2 Extensible syntax

Part of the reason for using the AST type instead of a GADT is that it supports
definition of generic traversals [6], which are the basis of the generic interpreta-
tion and transformation functions in Syntactic.

Another, equally important, reason for using AST is that it opens up for mak-
ing our syntax trees extensible. We cannot that Expr2 is closed in the same way
as Expr1: Adding a constructor requires changing the definition of NumDomain2.
However, the AST type is compatible with Data Types à la Carte [13], which is a
technique for encoding open data types in Haskell.4

The idea is to create domains as co-products of smaller independent domains
using the (:+:) type operator from Syntactic. To demonstrate the idea, we split
NumDomain2 into sub-domains and combine them into NumDomain3, used to define
Expr3. The new type Expr3 is again isomorphic to Expr1.

data Lit3 a where Lit3 :: Num a ⇒ a → Lit3 (Full a)
data Add3 a where Add3 :: Num a ⇒ Add3 (a :→ a :→ Full a)

type NumDomain3 = Lit3 :+: Add3

type Expr3 a = ASTF NumDomain3 a

To get extensible syntax we cannot use a closed domain, such as NumDomain3, but
instead use constrained polymorphism to abstract away from the exact shape of
the domain. The standard way of doing this in Data Types à la Carte is to use
the inj method of the (:<:) type class (provided by Syntactic). Using inj, the
smart constructors for Lit3 and Add3 can be defined thus:

lit3 :: (Lit3 :<: dom, Num a) ⇒ a → ASTF dom a
lit3 a = Sym (inj (Lit3 a))

add3 :: (Add3 :<: dom, Num a, Typeable a)
⇒ ASTF dom a → ASTF dom a → ASTF dom a

add3 x y = Sym (inj Add3) :$ x :$ y

The definition of smart constructors can be automated with appSym from Syntac-
tic. The following definitions of lit3 and add3 are equivalent to the ones above:

lit3 = appSym ◦ Lit3
add3 = appSym Add3

A constraint (Lit3 :<: dom) can be read as “dom contains Lit3”. That is, dom should
be a co-product chain of the general form (... :+: Lit3 :+: ...).

The fact that we have now achieved a modular language can be seen by noting
that the definitions of Lit3/lit3 and Add3/add3 are completely independent, and
could easily be in separate modules. Any number of additional constructs can
be added in a similar way.

4 The original Data Types à la Carte uses a combination of type-level fixed-points and
co-products to achieve open data types. Syntactic only adopts the co-products, and
uses the AST type instead of fixed-points.

2.3 Syntactic Sugar

It is not very convenient to require all embedded programs to have the type AST.
First of all, one might want to hide implementation details by defining a closed
language:

newtype Expr4 a = Expr4 {unExpr4 :: ASTF NumDomain3 a}

Secondly, it is sometimes desirable to use more “high-level” or domain specific
representations as long as these representations have a correspondence to an
AST.

data Pair a where
Pair :: Pair (a :→ b :→ Full (a,b))

data Select a where
Sel1 :: Select ((a,b) :→ Full a)
Sel2 :: Select ((a,b) :→ Full b)

Such high-level types are referred to as “syntactic sugar”. Syntactic sugar is
defined by the class below.

class Typeable (Internal a) ⇒ Syntactic a dom | a → dom where
type Internal a
desugar :: a → ASTF dom (Internal a)
sugar :: ASTF dom (Internal a) → a

instance Typeable a ⇒ Syntactic (ASTF dom a) dom where
type Internal (ASTF dom a) = a
desugar = id
sugar = id

In the Syntactic class the associated type Internal is a type function from the
(sugared) user visible type a to its internal representation in the AST. Note that
this type function does not need to be injective. It is possible to have several
syntactic sugar types sharing the same internal representation.

As a simple example, the instances for Expr4 and (,) would look as follows:

instance Typeable a ⇒ Syntactic (Expr4 a) NumDomain3 where
type Internal (Expr4 a) = a
desugar = unExpr4
sugar = Expr4

instance (Pair :<: dom, Select :<: dom, Syntactic a dom, Syntactic b dom) ⇒
Syntactic (a,b) dom where

type Internal (a,b) = (Internal a, Internal b)
desugar = uncurry $ sugarSym Pair
sugar a = (sugarSym Sel1 a, sugarSym Sel2 a)

The sugarSym function from Syntactic extends the appSym function with support
for syntactic sugar. Thus, the following declarations are equivalent:

pair1 a b = sugarSym Pair a b
pair2 a b = sugar $ appSym Pair (desugar a) (desugar b)

3 Monads in Syntactic

Monads, popularized by Wadler [15], provide ways of adding impure computa-
tions to languages with otherwise pure semantics. Such impure computations –
effects – are desired when implementing functions that for performance require
destructive updates. In this section we will show how to add an embedding of
monadic computations to Syntactic.

As with other constructs in Syntactic, the monad embedding consists of two
parts: a deep embedding representing the core syntax terms, and a set of library
functions providing the programmer interface. To enable the use of Haskell’s
do-notation and existing monadic combinators together with DSL programs, the
programmer interface is built on top of the Haskell continuation monad Cont (see
section 3.2).

3.1 Deep Embedding

Monads in Haskell are types that are members of the Monad type class.

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b
(>>) :: m a → m b → m b
fail :: String → m a

This type class can be represented in Syntactic by the GADT below.5

data MONAD m a where
Return :: MONAD m (a :→ Full (m a))
Bind :: MONAD m (m a :→ (a → m b) :→ Full (m b))
Then :: MONAD m (m a :→ m b :→ Full (m b))

The constructors are parameterized over the embedded monad m so that MONAD

can represent different monads. An example of one monad is given in section 4.
As usual, we use appSym to turn the monad symbols into AST constructors.

ret = appSym Return
thn = appSym Then

However, Bind requires special care. A straightforward definition using appSym

does not give us a very satisfying type:

bnd :: (MONAD m :<: dom, Typeable1 m, Typeable a, Typeable b)
⇒ ASTF dom (m a) → ASTF dom (a → m b) → ASTF dom (m b)

bnd = appSym Bind

The problem is the second argument. This is an expression that computes a
function – but we do not have a way to construct such expressions. The solution
chosen in Syntactic is to use higher-order abstract syntax (HOAS) [11] as a means
to embed functions in a syntax tree, see listing 2.

5 We omit the method fail, since we do not want to transfer its functionality to the
embedded language. Exceptions can be implemented separately using the monadic
support presented in this paper.

data HOLambda ctx dom a where
HOLambda :: (Typeable a, Typeable b, Sat ctx a)

⇒ (ASTF (HODomain ctx dom) a → ASTF (HODomain ctx dom) b)
→ HOLambda ctx dom (Full (a → b))

type HODomain ctx dom = HOLambda ctx dom :+: Variable ctx :+: dom

lambda :: (Typeable a, Typeable b, Sat ctx a)
⇒ (ASTF (HODomain ctx dom) a → ASTF (HODomain ctx dom) b)
→ ASTF (HODomain ctx dom) (a → b)

lambda = appSym ◦ HOLambda

class Sat ctx a where
data Witness ctx a
witness :: Witness ctx a

instance (Syntactic a (HODomain ctx dom), Syntactic b (HODomain ctx dom)
, Sat ctx (Internal a)) ⇒

Syntactic (a → b) (HODomain ctx dom) where
type Internal (a → b) = Internal a → Internal b
desugar f = lambda (desugar ◦ f ◦ sugar)

Listing 2: Higher-Order Abstract Syntax in Syntactic

To make a smart constructor based on HOAS for Bind, we first have to wrap
the function argument with the combinator lambda:

bnd :: (MONAD m :<: dom, Typeable a, Typeable b, Typeable1 m, Sat ctx a)
⇒ ASTF (HODomain ctx dom) (m a)
→ (ASTF (HODomain ctx dom) a → ASTF (HODomain ctx dom) (m b))
→ ASTF (HODomain ctx dom) (m b)

bnd k f = appSym Bind k (lambda f)

Note that the second argument of bnd is an ordinary Haskell function from AST

to AST, which leads to a type much closer to that of the ordinary (>>=) operator.
Using the Syntactic (a → b) instance bnd can be expressed as bnd = sugarSym Bind.

The Sat class is used to parameterize over class constraints by associating
them with a type ctx. This technique is inspired by restricted data types [9].
While the Sat class is not important in the implementation of monads, it is
included in this paper to complete the presentation of HOAS in Syntactic.

The smart constructors – ret, thn and bnd – can be used to implement generic
monad combinators like for example liftM.

-- Haskell implementation of liftM
liftM :: (Monad m) ⇒ (a → r) → m a → m r
liftM f m = do { x ← m; return (f x) }

-- Syntactic (deep) implementation of liftM
liftMdeep :: (MONAD m :<: dom, Typeable1 m, Typeable a, Typeable r, Sat ctx a)

⇒ (ASTF (HODomain ctx dom) a → ASTF (HODomain ctx dom) r)
→ ASTF (HODomain ctx dom) (m a) → ASTF (HODomain ctx dom) (m r)

liftMdeep f m = m ‘bnd‘ λx → ret (f x)

Note how the use of higher-order syntax allows us to use an ordinary λ-abstraction
to construct the continuation argument to bnd.

It would of course be nice if we could do without liftMdeep and just use liftM

for embedded programs. However, this is not directly possible, since we cannot
make AST an instance of the Monad class. In the following sections, we will give a
solution to this problem.

3.2 User Interface

For the monad extension, we wanted to use Haskell’s existing Monad class as
the interface. A Monad instance is valuable since it gives access to a wealth of
combinators for monadic expressions and to the convenient do-notation.

A naive, but incorrect, implementation of the Monad instance is:

newtype Mon ctx dom m a = Mon { unMon :: ASTF (HODomain ctx dom) (m a) }

-- Incorrect implementation
instance (MONAD m :<: dom) ⇒ Monad (Mon ctx dom m) where

return a = Mon $ ret a
ma >>= f = Mon $ unMon ma ‘bnd‘ (unMon ◦ f)
ma >> mb = Mon $ unMon ma ‘thn‘ unMon mb

However, that instance does not type-check for any of the methods. Consider
(>>=) in Haskell, which has the type Monad m ⇒ m a → (a → m b) → m b. That
signature is incompatible with the signature of the suggested implementation:

(MONAD m :<: dom, Sat ctx a, Typeable1 m, Typeable a, Typeable b)
⇒ Mon ctx dom m a
→ (ASTF (HODomain ctx dom) a → Mon ctx dom m b)
→ Mon ctx dom m b

This signature has two problems: (1) It constrains the type variables a and b,
which are required to be parametrically polymorphic by (>>=), and (2) the value
passed to the continuation has type ASTF ... a rather than just a, which would
be required by (>>=).

A way around this problem would be to use a restricted monad [9]. However,
such a solution would be incompatible with existing monad libraries in Haskell.
Furthermore, it is not possible to use do-notation with restricted monads without
the pervasive language extension RebindableSyntax.

3.3 Continuation Monad Wrapper

To work around the first problem above and make the parameter a polymorphic
again, we introduce a continuation monad wrapper around the AST.

newtype MS ctx dom m a = MS { unMS :: forall r. Typeable r
⇒ Cont (ASTF (HODomain ctx dom) (m r)) a }

Here the Haskell Continuation Monad holds expressions that will eventually
result in a syntax tree over the embedded monad m.

instance (MONAD m :<: dom, Typeable1 m, Sat ctx (Internal a)
, Syntactic a (HODomain ctx dom)
) ⇒

Syntactic (MS ctx dom m a) (HODomain ctx dom) where
type Internal (MS ctx dom m a) = m (Internal a)
desugar a = runCont (unMS a) (sugarSym Return)
sugar a = MS $ cont (sugarSym Bind a)

Listing 3: Syntactic sugar for monads

The parameter a is polymorphic since the constraints imposed by the AST

type only affect the result r of the continuation monad. By encapsulating the
continuation monad in a newtype we can make the type parameter r universally
quantified and prevent it from leaking out to clients.

The Monad instance can be written as usual for a newtype.

instance Monad (MS ctx dom m) where
return a = MS $ return a
ma >>= f = MS $ unMS ma >>= unMS ◦ f

There is still one piece of the puzzle missing. While the Monad instance gives
us access the do-notation and monadic combinators, it is just a continuation
monad. However, since the side effect of our MS monad is to build an AST, we
need to convert each action into its corresponding syntax element. The syntactic
sugar in the next section will automate the process.

3.4 Monads as Syntactic Sugar

With the Syntactic instance in listing 3 we can convert between monadic com-
putations and syntax trees.

The function desugar can build a syntax tree from an expression in the MS

monad by running the contuation-passing computation and returns the resulting
tree using sugarSym Return as the final continuation.

To construct a continuation-passing computation, sugar binds the result of
previous computations using sugarSym Bind.

As an illustration of how the continuation monad and the Syntactic instance
work together, we consider the following reduction of the expression

λx → desugar $ MS $ return x

Inline desugar from the Syntactic (MS ...) instance

λx → runCont (unMS (MS $ return x)) (sugarSym Return)

Simplify unMS/MS and inline runCont

λx → sugarSym Return x

Note that runCont applied the final continuation to the result of the computation
return x. We continue the reduction by inlining the definition of sugarSym.

λx → sugar $ appSym Return (desugar x)

Recall that for Syntactic (ASTF dom a) the definition of sugar is id.

λx → appSym Return (desugar x)

By inlining the definition of appSym the reduction is complete

λx → Sym (inj Return) :$ desugar x

Further examples of the sugared syntax will be shown in the context of the
Mutable monad in section 4.

4 Mutable Monad

With the monad feature added to Syntactic, it is now possible to extend it
further and embed specific monads into the AST type. To address our problem
with destructive updates we choose to implement a subset of the IO monad
from Haskell and the accompanying Data.IORef representing mutable references
in the IO monad. It is also possible to represent the mutable monad using the
state transformer monad from Control.Monad.ST and mutable references using
Data.STRef. The run function (runST :: (forall s. ST s a) → a) of the ST monad
has a universally quantified parameter s ensuring that the state does not leak out
of the monad, which increases safety. However, that implementation is slightly
more verbose and IO is sufficient to show mutability for this paper.

We add two constructs to our domain:

– Mutable represents a run function that will evaluate the mutations in se-
quence, returning the result as a pure value.

– MutableRef provides initialization, query and update of mutable references.

data Mutable a where
Run :: Mutable (IO a :→ Full a)

data MutableRef a where
NewRef :: MutableRef (a :→ Full (IO (IORef a)))
GetRef :: MutableRef (IORef a :→ Full (IO a))
SetRef :: MutableRef (IORef a :→ a :→ Full (IO ()))

type MyDomain6 = MONAD IO :+: Mutable :+: MutableRef :+: NumDomain3

Then we define a monad M for mutable updates as a specialisation of the MS type
and close the language under Data to make type signatures nicer.

type M a = MS Poly MyDomain6 IO a

newtype Data a = D { unD :: ASTF (HODomain Poly MyDomain6) a }

instance Typeable a ⇒ Syntactic (Data a) (HODomain Poly MyDomain6) where
type Internal (Data a) = a
desugar = unD
sugar = D

The context Poly is defined in Syntactic and denotes a fully polymorphic con-
straint.

Equipped with the Syntactic instance in listing 3, we create smart construc-
tors and combinators with friendly types.

runMutable6 :: (Typeable a) ⇒ M (Data a) → Data a
runMutable6 = sugarSym Run

newRef6 :: (Typeable a) ⇒ Data a → M (Data (IORef a))
newRef6 = sugarSym NewRef

getRef6 :: (Typeable a) ⇒ Data (IORef a) → M (Data a)
getRef6 = sugarSym GetRef

setRef6 :: (Typeable a) ⇒ Data (IORef a) → Data a → M (Data ())
setRef6 = sugarSym SetRef

modifyRef6 :: (Typeable a) ⇒ Data (IORef a) → (Data a → Data a) → M (Data ())
modifyRef6 r f = getRef6 r >>= setRef6 r ◦ f

We can now rewrite the example function iter from the introduction, making
use of mutable references to provide destructive updates. Note, to be able to use
the Feldspar compiler, the example below is written using types and functions
from Feldspar.

iter6 :: (Type a) ⇒ Length → (Data a → Data a) → Data a → Data a
iter6 n f i = runMutable $ do

r ← newRef i
go n r
getRef r

where
go 0 _ = return ()
go j r = modifyRef r f >> go (j-1) r

ex6 :: Data Int32 → Data Int32
ex6 = iter6 4 (λx → x + x)

Again, using the Feldspar Compiler we can generate the code by evaluating
icompile ex6. By virtue of the mutable references the calculation is now done
in-place without the need for storing intermediate values.

void ex6(int32_t v0, int32_t * out)
{

int32_t e0;

e0 = v0;
e0 = (e0 + e0);
e0 = (e0 + e0);
e0 = (e0 + e0);
(* out) = (e0 + e0);

}

5 Conclusion

We have shown an extension to the Syntactic library, enabling the representation
of monadic computations in the generic AST type. Using the monad together with
the constructs Mutable and MutableRef, we can model expressions with mutable
references. By embedding the monads in a continuation monad we avoid the
problem of creating a Monad instance, unlocking access to Haskell do-notation
and monadic combinators. That the extensions were possible without changing
the underlying Syntactic library or the target Feldspar language is a showcase
of the modularity of these languages.

The monadic constructs and combinators in this paper are not specific to one
language, but reusable by any language built using Syntactic, making Syntactic
applicable for a wider range of EDSLs.

The monadic constructs in Syntactic can be reused to implement other mon-
ads and interfaces. The mutable arrays in Feldspar are similar to the mutable
references presented in this paper.

We have also extended Feldspar with an experimental implementation of the
Par monad from Control.Monad.Par, which is a monad for deterministic paral-
lelism [10]. Future work includes studying the integration of different scheduling
algorithms and code generation.

6 Related Work

To the best of our knowledge, the technique of embedding a monad syntacticly
into an extensible EDSL presented in this paper is a novel technique. While
others have embedded monads into the continuation monad, the technique has
not been used in conjunction with Data Types à la Carte to define EDSLs.

Swierstra shows how to implement free monads on top of his Data Types
à la Carte [13]. By limiting the available operations, the available side effects
can be controlled at the type level. Since our work builds on Data Types à la
Carte, we get the same control over available side effects. However, Swierstra’s
monad is not applicable to deeply embedded DSLs, as it does not include a deep
embedding of the monadic combinators return and (>>=).

Hughes develops restricted monads in [9]. However, he does not create a
proper Monad instance, but instead a WfMonad class which is parameterized on a
dictionary. This makes the method incompatible with Haskell’s do-notation and
existing monad combinators.

Acknowledgements

This research is funded by Ericsson, Vetenskapsr̊adet, and the Swedish Foun-
dation for Strategic Research. The Feldspar project is an initiative of and is
partially funded by Ericsson Software Research and is a collaboration between
Chalmers, Ericsson and ELTE University.

References

[1] Feldspar compiler: http://hackage.haskell.org/package/feldspar-compiler
[2] Feldspar language: http://hackage.haskell.org/package/feldspar-language
[3] Syntactic library: http://hackage.haskell.org/package/syntactic
[4] Axelsson, E., Claessen, K., Sheeran, M., Svenningsson, J., Engdal, D., Persson, A.:

The design and implementation of Feldspar – an embedded language for digital
signal processing. In: 22nd International Symposium, IFL 2010. LNCS, vol. 6647
(2011)

[5] Axelsson, E., Dévai, G., Horváth, Z., Keijzer, K., Lyckeg̊ard, B., Persson, A.,
Sheeran, M., Svenningsson, J., Vajda, A.: Feldspar: A Domain Specific Language
for Digital Signal Processing algorithms. In: Proc. Eighth ACM/IEEE Interna-
tional Conference on Formal Methods and Models for Codesign, MemoCode. IEEE
Computer Society (2010)

[6] Axelsson, E., Sheeran, M.: Feldspar: Application and implementation. In: Lec-
ture Notes of the Central European Functional Programming School (to appear),
LNCS, vol. 7241 (2012)

[7] Elliott, C., Finne, S., de Moor, O.: Compiling embedded languages. Journal of
Functional Programming 13:3, 455– 481 (2003)

[8] Hudak, P.: Modular domain specific languages and tools. In: ICSR ’98: Proceed-
ings of the 5th International Conference on Software Reuse. p. 134. IEEE Com-
puter Society, Washington, DC, USA (1998)

[9] Hughes, J.: Restricted data types in Haskell. In: Proceedings of the 1999 Haskell
Workshop (1999)

[10] Marlow, S., Newton, R., Peyton Jones, S.: A monad for deterministic parallelism.
In: Proceedings of the 4th ACM symposium on Haskell. pp. 71–82. Haskell ’11,
ACM, New York, NY, USA (2011), http://doi.acm.org/10.1145/2034675.2034685

[11] Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: Proceedings of the
ACM SIGPLAN 1988 conference on Programming Language design and Imple-
mentation. pp. 199–208. PLDI ’88, ACM (1988)

[12] Schrijvers, T., Peyton Jones, S., Sulzmann, M., Vytiniotis, D.: Complete and
decidable type inference for GADTs. In: Proc. 14th ACM SIGPLAN international
conference on Functional programming. pp. 341–352. ACM (2009)

[13] Swierstra, W.: Data types à la carte. Journal of Functional Programming 18(4),
423–436 (2008)

[14] Wadler, P.: The expression problem.
http://www.daimi.au.dk/∼madst/tool/papers/expression.txt (1998)

[15] Wadler, P.: Comprehending monads. In: Proceedings of the 1990 ACM conference
on LISP and functional programming. pp. 61–78. LFP ’90, ACM, New York, NY,
USA (1990), http://doi.acm.org/10.1145/91556.91592

