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Abstract. We present a generic Haskell library for expressing rewrite
rules with a safe treatment of variables and binders. Both sides of the
rules are written as typed EDSL expressions, which leads to syntactically
appealing rules and hides the underlying term representation. Matching is
defined as an instance of Miller’s higher-order pattern unification and has
the same complexity as first-order matching. The restrictions of pattern
unification are captured in the types of the library, and we show by
example that the library is capable of expressing useful simplifications
that might be used in a compiler.

1 Introduction

Work on embedded domain-specific languages (EDSLs) has taught us many useful
techniques for constructing terms: smart constructors for hiding the underlying
representation of expressions, higher-order functions to represent constructs that
introduce local variables, phantom types to give a typed interface to an untyped
representation, etc. Unfortunately, these techniques are only applicable to term
construction, not to pattern matching. Pattern matching is needed to examine
expressions; for example in transformations, interpretation or compilation.

So, although EDSL users have a very nice interface for constructing ex-
pressions, EDSL implementors are confined to working with the underlying
representation. This can lead to several problems:

– Type safety: If the representation is untyped, it is easy to cause type errors
when transforming expressions.

– Verbosity: The representation may be inconvenient to work with, especially
if it is based on generic encodings, such as compositional data types [4].

– Scoping: When transforming expressions with binders, it is easy to cause
variables to escape their scope.

Although solutions or partial solutions exist for all of these problems, we are
not aware of any solution in Haskell that handles all of them at once. This paper
addresses all three problems in a single generic Haskell library for rewrite rules.
Our library is also efficient: the complexity of rule application is determined only
by the size of the rule. However, the library is restricted to plain rewrite rules –
it cannot be used to define arbitrary functions on expressions.



1.1 Running Example

As our running example, we will use the for-loop in the Feldspar EDSL [3].
Feldspar is a Haskell EDSL for signal processing and numeric computations. It
supports common functional programming idioms, such as map and fold, and
generates high-performance C code from such programs.

One of the more low-level constructs in Feldspar is forLoop:
forLoop :: Data Int → Data s → (Data Int → Data s → Data s) → Data s

Data is Feldspar’s expression type which is parameterized by the type of the
value the expression computes. The first argument to forLoop is the number of
iterations; the second argument is the initial state; the third argument is the
body which computes the next state given the loop index and the current state;
the result is the final state of the loop.

We are interested in expressing the following simplification rules for forLoop:

– If the number of iterations is 0, the result is the initial state.
– If the body always returns the previous state, the result is the initial state.
– If the body does not refer to the previous state, it is enough to run the last

iteration of the loop.

Furthermore, we would like to express these rules in a way that

– is independent of the representation of Data,
– does not allow accidentally changing the type of the expression,
– does not require looking at concrete variable identifiers,
– does not allow creating an ill-scoped expression.

To illustrate the problem, we try to express the rewrite rules as cases in a
Haskell function. Assuming Data is a simple recursive data type, with constructors
for lambda abstraction, variables, for-loops, etc., we might express the first two
rules as follows:

simplify (ForLoop (Int 0) init _) = init
simplify (ForLoop _ init (Lam i (Lam s (Var s')))) | s == s' = init

Even though the definition looks quite readable, it violates most of our require-
ments on rewrite rules: it leaks the representation of Data, does not guarantee
well-typedness, and involves comparing variable names.

The third rule is trickier. We want to rewrite an expression of the form
forLoop len init (λi s → body)

to
cond (len==0) init body'

where body' is body with len-1 substituted for i and provided that s does not
occur freely in body. The object-level function cond is used to return init when
the length is 0 and otherwise return body'.

Trying to express this rule as a case in simplify reveals an additional problem
of this style of rewriting: it is possible for body to contain free variables. In order



to prevent these variables from escaping their scope, either we need to check for
their absence or we need to substitute for these variables on the right hand side.
In the case of the third for-loop rule, we need to check that s does not occur
freely in body and we need to substitute an expression for i on the right hand
side. Either of these actions is very easy to forget.

As a preview of our solution, here is the third forLoop rule expressed using
our library:

rule_for3 len init body =
forLoop (meta len) (meta init) (λi s → body -$- i)

=⇒
cond (meta len === 0) (meta init) (body -$- (meta len - 1))

Note the use of Haskell’s λ-abstraction to give the pattern for the loop body. In
addition to being quite close to the desired syntax, the rule is also guaranteed to
be well-typed and well-scoped.

1.2 Overview of the Paper

Section 2 presents the basics of our rewriting library restricted to first-order
matching. Section 3 revisits the general problem of higher-order matching and
gives a simple algorithm for matching and rewriting based on Miller’s pattern
unification. Section 4 shows how our library can be extended to support higher-
order matching. Section 5 demonstrates the library using a simple version of the
Feldspar EDSL.

The rewriting library is available on Hackage.1 The code makes use of many
Haskell extensions, including TypeFamilies, GADTs, DerivingFunctor, etc. Consult
the GHC documentation2 for more information on these extensions.

2 A Generic Library for Rewrite Rules

In this section we show a first-order version of our library. The higher-order
version in Section 4 is mostly an extension of the definitions in this section. Only
the representation of meta-variables needs to be modified.

A rule is a pair of a left hand side (LHS) and a right hand side (RHS):
data Rule lhs rhs where
Rule :: lhs a → rhs a → Rule lhs rhs

The parameters lhs and rhs are representations of the left and right hand sides of
the rule. These representations are parameterized by the type of the corresponding
expression, just like Data in Section 1.1. The type parameter is existentially
quantified, and the only thing we care about is that lhs and rhs have the same
type parameter.
1 http://hackage.haskell.org/package/ho-rewriting-0.2
2 https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/

ghc-language-features.html

http://hackage.haskell.org/package/ho-rewriting-0.2
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ghc-language-features.html
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ghc-language-features.html


Rather than using fixed types for lhs and rhs, we will express our rules using
type classes. This will allow us to use many of the same functions to express
both sides of a rule, even if the two sides will in the end have slightly different
representations. Using type classes also allows us to extend the rule language
with new constructs simply by adding additional class constraints. Essentially,
we regard lhs and rhs as languages in the final tagless style [6].

The first classes we introduce are for meta-variables and wildcards:
class MetaVar r where
type MetaRep r :: * → *
meta :: MetaRep r a → r a

class WildCard r where
:: r a

The function meta introduces a meta-variable given a representation for it. The
reason for making the MetaRep an associated type is to be able to disallow in-
spection of the representation of meta-variables. As long as we keep r abstract,
MetaRep r will also be an abstract type. The method (double underscore) of
the WildCard class constructs a pattern that matches any term. As we will see,
our implementation only allows wildcards on the LHS of a rule.

Next, we introduce a convenient short hand for rules:
(=⇒) :: lhs a → rhs a → Rule lhs rhs
(=⇒) = Rule

infix 1 =⇒

Interestingly, we now have all the machinery we need to start expressing some
rules for numeric operations. Each rule is given as a Haskell definition that takes
the necessary meta-variables as arguments:3

-- 0 + X =⇒ X
rule_add x = 0 + meta x =⇒ meta x

-- X - X =⇒ 0
rule_sub x = meta x - meta x =⇒ 0

-- 0 * _ =⇒ 0
rule_mul = 0 * =⇒ (0 :: _ Int)

How is it that we can already write rules about numeric operations without
even having given a representation for the LHS and RHS of rules? Looking at
the inferred type of rule_add tells us what is going on:

rule_add :: (MetaVar lhs, MetaVar rhs, MetaRep lhs ∼ MetaRep rhs, Num (lhs a))
⇒ MetaRep lhs a → Rule lhs rhs

3 Note the partial type annotation (... :: _ Int) in rule_mul. It is used to constrain
the type parameter of the RHS without saying anything about the representation of
the RHS. Partial type signatures require the recent PartialTypeSignatures extension
to GHC. However, this extension is not strictly needed: an equivalent formulation of
the RHS would be (id :: r Int → r Int) 0.



Since the rules are expressed entirely using type class operations (including
those of the Num class), the type is polymorphic in lhs and rhs. But we see a number
of constraints due to the way the operations are used. The constraints tell us that
both sides have to support meta-variables, and whatever the representation of
meta-variables is, it must be the same on both sides. Furthermore, lhs has to have
a Num instance. The type parameter a to MetaRep r ensures that meta-variables
are used at the same type if they occur multiple times a rule.

The partial type annotation in rule_mul is used to fix the type of the rule
(i.e. the parameter to lhs and rhs). It is needed because rule_mul does not take a
meta-variable identifier as argument, so the numeric type does not show up in
the type of the rule (except in the context):

rule_mul :: (WildCard lhs, Num (lhs Int), Num (rhs Int)) ⇒ Rule lhs rhs

Of course, much more work is needed before we can actually do something
with the above rules, but the rules themselves will not need any modifications.
They can be used with our library as they stand.

2.1 Representation of Terms and Patterns
We need different restrictions on the different representations in our library:

– Meta-variables are allowed in rules, but not in the terms being rewritten.
– Wildcards are only allowed on the LHS, not on the RHS of rules.

However, all constructs of the object language should be available to use in the
rules.

In order to maintain these restrictions while allowing maximal sharing between
the representations, we make use of Data Types à la Carte [21]. The basic idea is
to use a standard fixed-point data type parameterized by a base functor:

data Term f = Term { unTerm :: f (Term f) }

Term is a recursive data type where each node is a value of the base functor f. By
using different f types, we can represent terms of different signatures.

Sharing between different representations is achieved by expressing the base
functor as a co-product of smaller functors. Co-products are formed by the :+:

type, which can be seen as a higher-kinded version of the Either type:
data (f :+: g) a = Inl (f a)

| Inr (g a)

infixr :+:

For example, given two functors representing numeric and logic operations
data NUM a

= Int Int
| Add a a
| Sub a a
| Mul a a

deriving (Functor)

data LOGIC a
= Bool Bool
| Not a
| And a a
| Equal a a
| Cond a a a

deriving (Functor)



we can form expressions of numeric and logic operations by using their co-product
as the base functor of a Term:

type Exp = Term (NUM :+: LOGIC)

The concrete representations for left and right hand sides of rules are defined
as follows:

newtype LHS f a = LHS { unLHS :: Term (WILD :+: META :+: f) }
newtype RHS f a = RHS { unRHS :: Term (META :+: f) }

data WILD a = WildCard deriving Functor
data META a = Meta Name deriving Functor

type Name = Int

Both LHS and RHS are parameterized on a base functor f representing the signature
of the language the rules operate on. LHS extends f with meta-variables and
wildcards while RHS only extends f with meta-variables. Both LHS and RHS have a
phantom type parameter a which denotes the type of the corresponding term. It is
used to ensure that only well-typed left and right hand sides can be constructed.

We can now make instances of the classes introduced earlier:
instance WildCard (LHS f) where

= LHS $ Term $ Inl WildCard

instance MetaVar (LHS f) where
type MetaRep (LHS f) = META
meta = LHS . Term . Inr . Inl . castMETA

instance MetaVar (RHS f) where
type MetaRep (RHS f) = META
meta = RHS . Term . Inl . castMETA

Note that META is used in two roles here: (1) as the constructor for meta-
variables in LHS and RHS, and (2) as the concrete instance of MetaRep. The function
castMETA is used to convert between these two roles:

castMETA :: META a → META b
castMETA (Meta v) = Meta v

For example, in the instance MetaVar (LHS f), we have meta :: META a → LHS f a

and then castMETA is used at the concrete type
castMETA :: META a → META (Term (WILD :+: (META :+: f)))

Our library makes use of the Compdata package [4] for the implementation
of Term and :+:. Compdata is a Haskell library based on Data Types à la Carte,
and it provides many utilities for working with representations based on Term.

2.2 Matching and Rewriting

We will now give a formal definition of the rewriting algorithm used in our library.
The following grammar defines terms and rules:



?= t []
wild

M
?= t [M 7→ t]

meta

f = g l1
?= t1  σ1 . . . ln

?= tn  σn

f l1 . . . ln
?= g t1 . . . tn  concat(σ1 . . . σn)

symbol

rewrite(l =⇒ r, t) = JσKr where l
?= t σ

consistent(σ)

Fig. 1. First-order matching and rewriting.

Symbols f, g a set of symbols with associated arities
Meta-variables M

Terms t ::= f ~t

LHS l ::= f ~l | M |
RHS r ::= f ~r | M
Rules ρ ::= l =⇒ r

A term t is a tree where each node has a symbol f and zero or more sub-trees.
A left hand side l is a term extended with meta-variables and wildcards, and a
right hand side r is a term that is only extended with meta-variables.

The first-order version of our library is based on standard syntactic rewriting,
as defined in Figure 1. The matching relation l ?= t σ defines how matching a
term t against a pattern l results in a list σ of mappings from meta-variables to
sub-terms. Wildcards and meta-variables match any term, with the difference
that matching against a meta-variable results in a mapping in the substitution.
For symbols, matching is done recursively for the children, and the resulting
substitutions are concatenated.

Rewriting is defined as matching a term against the LHS and applying the
corresponding substitution to the RHS. We use JσKr to denote application of a
substitution σ to r. Since we allow non-linear patterns, where the same meta-
variable occurs more than once, we also have to check that the substitution
obtained from matching is consistent; i.e. that each given meta-variable only
maps to equal terms.

The corresponding functions in our library are
type Subst f = [(Name, Term f)] -- Substitution

match :: (Functor f, Foldable f, EqF f)
⇒ LHS f a → Term f → Maybe (Subst f)



substitute :: Traversable f ⇒ Subst f → RHS f a → Maybe (Term f)

The match function succeeds if and only if the LHS matches the term and all
occurrences of a given meta-variable are matched against equal terms. The
substitute function succeeds if and only if each meta-variable in the RHS has a
mapping in the substitution. The EqF class comes from the Compdata package,
and is used for comparing symbols.

Combining match and substitute gives us the rewrite function:

rewrite :: (Traversable f, EqF f)
⇒ Rule (LHS f) (RHS f) → Term f → Maybe (Term f)

rewrite (Rule lhs rhs) t = do
subst ← match lhs t
substitute subst rhs

When working with lists of rewrite rules, we are often interested in trying the
rules in sequence and picking the first one that applies. That is the purpose of
applyFirst:

applyFirst :: (Traversable f, EqF f)
⇒ [Rule (LHS f) (RHS f)] → Term f → Term f

applyFirst rs t = case [t' | rule ← rs, Just t' ← [rewrite rule t]] of
t':_ → t'
_ → t

If no rule matches, applyFirst returns the original term.
Another strategy is to rewrite each node in a term from bottom to top:

bottomUp :: Functor f ⇒ (Term f → Term f) → Term f → Term f
bottomUp rew = rew . Term . fmap (bottomUp rew) . unTerm

The first argument to bottomUp is the node rewriter. Since each node is a functor
value, we use fmap to recursively transform all children. Then we apply the node
rewriter to the resulting term.

A top-down strategy is defined in a similar way; just apply the rewrite before
the recursive call:

topDown :: Functor f ⇒ (Term f → Term f) → Term f → Term f
topDown rew = Term . fmap (topDown rew) . unTerm . rew

Typically, one is interested in combinations such as bottomUp (applyFirst rs),
which applies the first matching rule in the list rs to each node in a term.

3 Higher-Order Rewriting

The library presented in Section 2 works well for first-order rules, such as rule_add

from earlier. But in order to express simplification rules for the for-loop in
Section 1.1, we need to extend the library and the rewriting algorithm with
support for higher-order terms and rules.



The matching algorithm from Figure 1 is purely syntactic. It obeys the
following property, where = is syntactic equality:4

l
?= t σ ⇒ JσKl = t

Higher-order matching [11,22], on the other hand, obeys the following semantic
property, where t ≡α,β,η u means that t and u reduce to the same term up to
α-renaming:

l
?= t σ ⇒ JσKl ≡α,β,η t

Substitution in the higher-order case must be capture-avoiding.
If we extend our rule language to higher-order rules, the third rule of the

for-loop in Section 1.1 can be defined as follows:

forLoop len init (λi.λs. body i) =⇒ cond (eq len 0) init (body (sub len 1))

We use the convention to write meta-variables using smallcaps. The symbols
forLoop, cond, eq and sub represent for-loops, conditions, equality and subtrac-
tion, respectively. We also treat numeric literals as predefined symbols.

Using normal syntactic matching semantics, the above rule would only match a
for-loop whose body binds exactly the variables i and s, and where some expression
is immediately applied to i inside the abstraction. However, using higher-order
matching semantics, the pattern λi.λs. body i matches any expression with two
enclosing λ-abstractions and a body that only refers to the first bound variable.

As an example, we match the term t1 against the pattern l1 defined as follows:

t1 = forLoop 10 0 (λx.λy. sub x 2)
l1 = forLoop len init (λi.λs. body i)

Despite the fact that sub x 2 is not an immediate application to x, the pattern
matches, and results in the substitution

σ1 = [ len 7→ 10
, init 7→ 0
, body 7→ λz. sub z 2 ]

We check the result by applying σ1 to l1 which gives a result equivalent to t1:

Jσ1Kl1 = forLoop 10 0 (λi.λs. (λz. sub z 2) i) ≡α,β,η t1

An alternative to introducing a fresh variable z for body is to reuse the
existing variable name x. That would give the following substitution instead:

σ1 = [ . . . , body 7→ λx. sub x 2 ]

This result is just as valid as the previous one, and it has the advantage that the
body sub x 2 does not need to be renamed.
4 The property is almost true: it holds if we replace all wildcards in l with unique
meta-variables.



An implicit side condition in higher-order matching is that the resulting
substitution is not allowed to contain free variables that were not free in the
original term. For example, the following term does not match l1:

t2 = forLoop 10 0 (λx.λy. sub x y)

An attempt at a solution might be

σ2 = [ . . . , body 7→ λx. sub x s ]

This solution has s as a free variable. However, Jσ2Kl1 is not equivalent to t2,
because substitution is defined to be capture-avoiding.

If we want to allow s to occur in the body, we need to declare that by listing
s as one of the arguments to body:

l2 = forLoop len init (λi.λs. body i s)

Matching t2 against this pattern results in the substitution

σ3 = [ . . . , body 7→ λx.λy. sub x y ]

for which it holds that Jσ3Kl2 is equivalent to t2.

3.1 Tractability

Higher-order matching is an instance of higher-order unification, with the dif-
ference that the latter permits meta-variables on both sides of the ?= relation.
Higher-order unification is undecidable in general [10]. Higher-order matching
is decidable, but its complexity class is at least NP-complete for second-order
problems and upwards [22].

Miller identified a fragment for which unification is efficient, namely when each
meta-variable is applied only to distinct object-language variables [12]. Note that
l1 and l2 from before fall under this category, because body is only applied to the
object-language variables i and s. This restriction of the general problem is called
the pattern fragment. The term “pattern” refers to the list of object-language
variables that a meta-variable is applied to, and should not be confused with its
use in the term “pattern matching”.

3.2 Rewriting Based on Pattern Unification

Matching for the pattern fragment can be done as a lightweight extension to the
first-order algorithm presented in Section 2.2.

Figure 2 shows the previous grammar extended with object-language variables
and λ-abstraction. We ensure that terms and rules are in β-short normal form
by making use of the so-called spine formulation [7] which disallows application
of λ-abstractions. We do however allow general applications in the result after
rewriting, which is why the production t ~t for terms is put in parentheses. On



Symbols f a set of symbols with associated arities
Object variables v

Atoms a, b ::= v | f
Meta-variables M

Terms t ::= a ~t | λv.t (| t ~t)
LHS l ::= a ~l | λv.l | M ~v |
RHS r ::= a ~r | λv.r | M ~r

Rules ρ ::= l =⇒ r

Fig. 2. Grammar for higher-order terms and rewrite rules in the pattern fragment.

?= t []
wild l

?= t σ

λv.l
?= λv.t σ

lam

a = b l1
?= t1  σ1 . . . ln

?= tn  σn

a l1 . . . ln
?= b t1 . . . tn  concat(σ1 . . . σn)

atom

freeV ars(λv1 . . . λvn.t) = ∅

M v1 . . . vn
?= t [M 7→ λv1 . . . λvn.t]

meta

Fig. 3. Simplified higher-order matching for the pattern fragment.

the LHS, meta-variables can only be applied to object-language variables, while
this restriction is not needed on the RHS.

A simplified higher-order matching algorithm is defined in Figure 3. The sym
rule has been replaced with the atom rule, which covers both symbols and object-
language variables. λ-abstractions are matched structurally. Meta-variables are
matched simply by turning the list of arguments into a number of λ-abstractions,
as we did previously in the for-loop example. Like in that example, we also reuse
the names v1 . . . vn in the lambda abstractions, which avoids having to rename
variables in t.

The given algorithm is a bit simplified for presentation purposes:

– It does not deal with α-renaming.
– It does not allow any free variables in the substitution. As mentioned earlier,

we can allow free variables if they were already free in the original term.
– It assumes that λ is always matched against λ. For example, the term λv.f v

will not match its η-reduced form f , as it should.

The implementation in our library deals correctly with α-renaming and free
variables. The simplest way to deal with η conversion is to always η-expand sub-
expressions of function type to get terms in η-long normal form. Our matching
algorithm currently does not do this; however, it is possible to define the user



interface in such a way that partially applied atoms do not occur in practice. We
will see how that is done in Section 5.

Once higher-order matching has been defined, higher-order rewriting is defined
analogously to the rewrite function in Figure 1. It should be noted that when
substituting for meta-variables on the RHS, we may create β-redexes for meta-
variables that have arguments. In our implementation, it is possible to choose
whether to reduce those redexes immediately or leave them for later.

Matching according to the rules in Figure 3 is efficient in the sense that
the number of recursive steps is bounded by the size of the pattern. The only
possible source of inefficiency is the use of freeV ars in the meta rule. Our
implementation avoids traversing the whole term when checking the free variables
simply by caching the set of free variables for each node in a term. The result is
that the complexity of rule application is determined only by the size of the rule
– just like for first-order matching.

3.3 Most general solutions

There is one aspect of Miller’s pattern restriction that we do not enforce: meta-
variables must only be applied to distinct object-language variables. This restric-
tion is needed to ensure the existence of a most general unifier. The main reason
we do not enforce it is that it is hard to capture this particular restriction in the
types of the library.

For example, when matching λx. sub x 2 against λy. body y y, there are two
possible solutions: body 7→ λa.λx. sub x 2 and body 7→ λx.λa. sub x 2. Our
implementation will blindly give the result body 7→ λx.λx. sub x 2, which is
equivalent to the first solution. There is nothing wrong with either solution; the
only problem is that picking one instead of the other is a bit arbitrary.

To avoid this problem, the library user must make sure to only apply meta-
variables to distinct object-language variables.

4 Extending the Library to Higher-Order Rewriting

We will now show how to extend the first-order library from Section 2 to higher-
order rewriting. LHS and RHS in Figure 2 permit application of meta-variables
to objects of different kinds. LHS only allows application to object-language
variables, while RHS allows application to arbitrary terms. We reconcile these
different requirements using the type MetaExp which represents meta-variables
applied to a number of arguments:

data MetaExp (r :: * → *) a where
MVar :: MetaRep r a → MetaExp r a
MApp :: MetaExp r (a → b) → MetaArg r a → MetaExp r b

type family MetaRep (r :: * → *) :: * → *
type family MetaArg (r :: * → *) :: * → *

The representation of the meta-variable is given by the type family MetaRep

(corresponding to the associated type of the same name in Section 2), and



the representation of the arguments is given by MetaArg. By using different
MetaArg representations, we can enforce different requirements for meta-variable
application in the LHS and RHS.

We introduce yet another type family which gives an abstract representation
of object-language variables:

type family Var (r :: * → *) :: * → *

We can now give the following MetaArg instances for LHS and RHS:
type instance MetaArg (LHS f) = Var (LHS f)
type instance MetaArg (RHS f) = RHS f

The first instance ensures that meta-variables can only be applied to object-
language variables on the LHS, while the second instance permits arbitrary terms
as meta-variable arguments on the RHS.

We redefine the MetaVar class with a single method that constructs an expres-
sion from a MetaExp value:

class MetaVar r where
metaExp :: MetaExp r a → r a

instance MetaVar (LHS f)
-- see library source for details

instance MetaVar (RHS f)
-- see library source for details

Introducing meta-variables using MVar, MApp and metaExp is quite cumbersome,
so we provide a number of helper functions:

meta :: MetaVar r ⇒ MetaRep r a → r a
meta = metaExp . MVar

($$) :: MetaExp r (a → b) → MetaArg r a → MetaExp r b
($-) :: MetaVar r ⇒ MetaExp r (a → b) → MetaArg r a → r b
(-$) :: MetaRep r (a → b) → MetaArg r a → MetaExp r b
(-$-) :: MetaVar r ⇒ MetaRep r (a → b) → MetaArg r a → r b

($$) = MApp
f $- a = metaExp (MApp f a)
f -$ a = MApp (MVar f) a
f -$- a = metaExp (MApp (MVar f) a)

infixl 2 $$, $-, -$, -$-

The function meta has the same type as in Section 2, and it introduces a meta-
variable without any arguments. For meta-variables with arguments, we use the
different application operators:

-$- is used when there is only one argument.
-$ is used for the first argument when there are more than one argument.
$- is used for the last argument when there are more than one argument.
$$ is used for used for any but the first and last arguments.



As an example, assume we have two meta-variables and two object-language
variables of the following types (for some base functor F):

m1 :: MetaRep (LHS F) Int
m2 :: MetaRep (LHS F) (Int → Char → Bool)
v1 :: Var (LHS F) Int
v2 :: Var (LHS F) Char

Then we can use them to form LHS terms like this:
meta m1 :: LHS F Int
m2 -$ v1 $- v2 :: LHS F Bool

4.1 Object-language variables and binders

The following type class is for object-language variables and binders:
class Bind r where
var :: Var r a → r a
lam :: (Var r a → r b) → r (a → b)

The function var constructs a variable, and lam makes a λ-abstraction from a
Haskell function. For example, the term λx. x+ 2 is represented as follows:

lam (λx → var x + 2)

Note that the only way to construct a value of the abstract type Var is using
lam. This ensures that Var faithfully represents object-language variables.

The concrete representation of object-language variables uses VAR which is a
typed newtype wrapper around a name:

type instance Var (LHS f) = VAR
type instance Var (RHS f) = VAR

newtype VAR a = Var Name deriving Functor

VAR has the same double role as META in Section 2.1: it is both used to identify
object-language variables and as a functor that represents a variable node in a
term.

The above Var instances both have VAR on the right hand side, but in Section 5
we will see an instance with a different right hand side.

The library uses a first-order term representation internally, despite the fact
that lam has a higher-order type. This is possible due Axelsson and Claessen’s
technique for generating first-order terms from a higher-order interface [2].

4.2 Rewriting

The functions that perform higher-order rewriting have slightly different types
compared to those from Section 2.2. One difference is that the result of rewriting
is a term where each node is annotated with its set of free variables. As discussed
in Section 3.2, we need to cache the set of free variables in order to make matching
efficient.



The function applyFirst now has the following type:
applyFirst :: (..., g ∼ (f :&: Set Name))

⇒ (Term g → Term g → Term g)
→ [Rule (LHS f) (RHS f)]
→ Term g → Term g

Term (f :&: Set Name) is a term where each node is annotated with a set of names.
The first argument to applyFirst is an application operator which is used when
replacing applied meta-variables on the RHS of a rule. Taking this operator as
an argument allows the user to choose whether to construct a redex or to reduce
it right away.

In order to shield the user from the free-variable annotations, we provide
the following function that turns a rewriter for annotated terms into one for
non-annotated terms:

rewriteWith :: (..., g ∼ (f :&: Set Name))
⇒ (Term g → Term g) → Term f → Term f

A typical use of this function is
rewriteWith (bottomUp (applyFirst ...)) :: (...) ⇒ Term f → Term f

where f is a functor without annotation.

4.3 Quantifying over Meta-Variables

Functions such as applyFirst take a list of rules as argument. But most rules are
of the form of Haskell functions that take extra arguments corresponding to the
meta-variables used. For example, the type of rule_add from Section 2 is

rule_add :: ( MetaVar lhs, MetaVar rhs, Num (lhs a)
, MetaRep lhs ∼ MetaRep rhs
)

⇒ MetaRep lhs a → Rule lhs rhs

The Quantifiable type class automates the task of providing fresh meta-
variables to functions like rule_add:

class Quantifiable rule where
type RuleType rule
quantify' :: Name → rule → RuleType rule

quantify :: (Quantifiable rule, RuleType rule ∼ Rule lhs rhs)
⇒ rule → Rule lhs rhs

quantify = quantify' 0

instance Quantifiable (Rule lhs rhs) where
type RuleType (Rule lhs rhs) = Rule lhs rhs
quantify' _ = id

instance (Quantifiable rule, m ∼ MetaId a) ⇒ Quantifiable (m → rule) where
type RuleType (m → rule) = RuleType rule
quantify' i rule = quantify' (i+1) (rule (MetaId i))



The first instance is for rules that do not have any meta-variables to quantify over.
The second instance recursively quantifies one meta-variable at a time. MetaId is
the concrete representation of meta-variables.

Using quantify, we can package our rules in a list of the type expected by
applyFirst:

rules = [ quantify (rule_add :: _ Int → _)
, quantify (rule_sub :: _ Int → _)
, quantify rule_mul ]

Note the use of a partial type signature to constrain the type of the meta-variable,
which would otherwise be ambiguous.

5 Case Study – Feldspar

The repository contains an example file5 inspired by Feldspar that makes use
of the library. In this section, we will highlight the important parts of that
implementation. The interested reader is encouraged to learn more by looking at
the source code.

Feldspar’s expression type Data is defined as a newtype wrapper around a
Term over the functor Feld:

type Feld = VAR :+: LAM :+: APP :+: NUM :+: LOGIC :+: FORLOOP

newtype Data a = Data { unData :: Term Feld }

Feld is a sum of several smaller functors, where VAR, LAM and APP represent the
constructs of the lambda calculus, NUM and LOGIC represent numeric and logic
operations, and FORLOOP is the Feldspar-specific for-loop.

Object-language variables are represented just as Feldspar expressions, which
avoids the need to use the var function to introduce object-language variables:

type instance Var Data = Data

Since we want to be able to construct for-loops in rules as well as in ordinary
Feldspar expressions, we overload the for-loop using a type class:

class ForLoop r where
forLoop_ :: r Int → r s → r (Int → s → s) → r s

The third argument to forLoop_ has function type, so it needs to be constructed
by lam. The following higher-order function takes care of wrapping the body in
lam:

forLoop :: (ForLoop r, Bind r)
⇒ r Int → r s → (Var r Int → Var r s → r s) → r s

forLoop len init body = forLoop_ len init (lam $ λi → lam $ λs → body i s)

Exposing functions like forLoop to the user instead of lam and forLoop_ ensures
that λ-abstractions are only used at specific places. This solves the problem of
matching lambdas that was mentioned in Section 3.2. Although restricting the
5 https://github.com/emilaxelsson/ho-rewriting/blob/0.2/examples/Feldspar.hs

https://github.com/emilaxelsson/ho-rewriting/blob/0.2/examples/Feldspar.hs


use of lam may not be desired in general, it works well in a language like Feldspar
which is essentially a first-order language with a few predefined higher-order
symbols such as FORLOOP.

Using forLoop, we can now express the three for-loop rules from Section 1.1:
rule_for1 init = forLoop 0 (meta init) (λi s → ) =⇒ meta init
rule_for2 init = forLoop (meta init) (λi s → var s) =⇒ meta init
rule_for3 len init body =

forLoop (meta len) (meta init) (λi s → body -$- i)
=⇒

cond (meta len === 0) (meta init) (body -$- (meta len - 1))

The === operator is equality in this toy version of Feldspar.
A Feldspar simplifier is obtained by applying the simplification rules bottom-

up as follows:
simplify :: Data a → Data a
simplify = Data . rewriteWith (bottomUp (applyFirst app rulesFeld)) . unData

The application operator app tells applyFirst to keep any redexes created by
rewriting, and rulesFeld is a list of all the rules defined in this paper.

We have used forLoop to define rules, but we can also use it to write Feldspar
expressions. Here is an example containing two for-loops that can be simplified:

forExample :: Data Int → Data Int
forExample a = forLoop a a (λi s → (i-i)+s) + forLoop a a (λi s → i*i+100)

We simplify the expression by running

*Main> unData $ simplify $ lam forExample
(Lam 2 (Add (Var 2) (Cond (Equal (Var 2) (Num 0)) (Var 2) (App (Lam 1 (Add
(Mul (Var 1) (Var 1)) (Num 100))) (Sub (Var 2) (Num 1))))))

We see that the simplifier removes both loops: the first one because it never
changes the state, and the second one because its body does not refer to the
previous state.

6 Related Work

Function patterns One of the problems solved in this paper is being able to
use the same syntax both for pattern matching and construction and to hide
the underlying representation of expressions. A more general solution to this
particular problem is function patterns [1,8,17], which allow ordinary functions to
be used inside patterns. When matching a term t against a function pattern, say
f p, the inverse of f is used to compute a value to match against the argument p.
Here, f can be a smart constructor whose purpose is to hide the representation
of terms, or to give a typed interface using phantom types.

The recent PatternSynonyms extension in GHC allows the declaration of bidi-
rectional patterns that can be used both for matching and construction. These
can be seen as a restricted form of function patterns.

There may seem to be a similarity between function patterns and patterns
with applied meta-variables in our library. In both cases we have patterns



involving applied functions. However, there are important differences: First of
all, function patterns allow ordinary functions inside patterns, while our library
is only concerned with functions in some object language. Moreover, function
patterns only allow using existing functions inside patterns; they cannot be used
to synthesize function definitions the way that higher-order matching does.

Mohnen introduced context patterns for Haskell [13]. These are more similar
to higher-order matching in that they allow meta-variables of function type (so
matching can actually synthesize function definitions). However, a main difference
to our work (again) is that context patterns involve actual Haskell functions
rather than object-level functions.
Rewriting libraries Yokoyama et al. have made a library based on Template
Haskell for higher-order rewriting of Haskell code [23]. Just like in our library,
they restrict matching in the interest of efficiency. However, their restrictions are
different: for example, meta-variables can be applied to at most one argument,
but this argument can be an arbitrary pattern. It remains to be investigated
whether their restrictions are suitable for the kind of syntactic rewrites that we
are interested in.

There has also been work on generic, first-order rewriting libraries for
Haskell [15,9,5]. In particular, the work of van Noort et al. [15] has similarities
to our implementation: it uses an intensional representation of rules as data,
and it generically extends data type representations with a constructor for
meta-variables. The main differences are that their library works for any regular
data type and that it does not support higher-order rewriting. The library by
Felgenhauer, et al. [9] also has an intensional representation of rules, but uses a
simpler term representation: a rose tree extended with meta-variables.

As a concrete example, here is the rule for addition with zero, expressed with
our library and with the library by van Noort et al.:

rule_add x = 0 + meta x =⇒ meta x -- our library
rule_add x = Add (Num 0) x 7−→ x -- van Noort's library

Add and Num are constructors of the regular data type for expressions. It seems
plausible that their library can be combined with smart constructors to get rules
that look more like in our library (with the added benefit of type-safety, etc.). We
see no direct reason why one could not also extend their library to higher-order
rewriting, given a suitable generic representation of variables and binders.

Strategic rewriting libraries such as KURE [19] provide a rich set of strategies
for building complex traversals of data. The main focus in this paper is on rewrite
rules rather than strategies – bottomUp and topDown being the two main strategies
presented. It would be interesting to extend our library with more strategies, or
perhaps even combine it with an existing library for strategic rewriting.
Pattern unification Higher-order pattern unification is at the core of systems
that manipulate higher-order data like Twelf [18] and λProlog [14] or type
reconstruction algorithms for dependently typed languages such as Agda [16].
In such cases the unification problems that fall into the pattern fragment are
solved immediately, while the others are suspended in hope that they will become
tractable later when more meta-variables have been solved.



7 Discussion and Future Work

The motivation behind the presented library is for it to be used in the imple-
mentation of Feldspar. However, Feldspar is currently based on a different term
representation. Our future plan is to rewrite Feldspar so that it can use the
rewriting library for optimizations.

A key aspect of the library is the algorithmic efficiency of higher-order
rewriting: the complexity of rule application is bounded only by the size of the
rule, just like for first-order rewriting. However, we have not yet tested how well
the library performs in practice for large problems. This remains as future work.

The presented library makes it possible to express higher-order rewrite rules
in a safe way using clean syntax. However, one disadvantage of the library is that
the error messages can be quite confusing due to the heavy type-level machinery
involved. This is a common problem of embedded DSLs, but it may be solvable
by recent work on type error diagnosis [20].

When writing rules like rule_add below, the intention is that lhs and rhs

should be abstract in order to disallow inspection of the meta-variable argument.
rule_add :: ( ... ) ⇒ MetaRep lhs a → Rule lhs rhs

But rewriting functions such as applyFirst accept rules with the concrete repre-
sentations LHS and RHS. In order to make the library safer, we should require the
arguments to rewriting functions to be polymorphic in their representations. We
have not yet been able to make such a solution work together with quantify and
constraints such as Num (lhs a), but we are hopeful that it can be done.
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