
A Generic Abstract Syntax Model for Embedded Languages

Emil Axelsson
Chalmers University of Technology

emax@chalmers.se

Abstract
Representing a syntax tree using a data type often involves hav-
ing many similar-looking constructors. Functions operating on such
types often end up having many similar-looking cases. Different
languages often make use of similar-looking constructions. We pro-
pose a generic model of abstract syntax trees capable of represent-
ing a wide range of typed languages. Syntactic constructs can be
composed in a modular fashion enabling reuse of abstract syntax
and syntactic processing within and across languages. Building on
previous methods of encoding extensible data types in Haskell, our
model is a pragmatic solution to Wadler’s “expression problem”.
Its practicality has been confirmed by its use in the implementation
of the embedded language Feldspar.

Categories and Subject Descriptors D.2.11 [Software Archi-
tectures]: Languages; D.2.13 [Reusable Software]: Reusable li-
braries; D.3.2 [Language Classifications]: Extensible languages;
D.3.3 [Language Constructs and Features]: Data types and struc-
tures

Keywords the expression problem, generic programming, embed-
ded domain-specific languages

1. Introduction
In 1998, Philip Wadler coined the “expression problem”:1

“The Expression Problem is a new name for an old prob-
lem. The goal is to define a datatype by cases, where one
can add new cases to the datatype and new functions over
the datatype, without recompiling existing code, and while
retaining static type safety (e.g., no casts).”

This is not just a toy problem. It is an important matter of making
software more maintainable and reusable. Being able to extend ex-
isting code without recompilation means that different features can
be developed and verified independently of each other. Moreover,
it gives the opportunity to extract common functionality into a li-
brary for others to benefit from. Having a single source for common
functionality not only reduces implementation effort, but also leads
to more trustworthy software, since the library can be verified once
and used many times.

1 http://www.daimi.au.dk/∼madst/tool/papers/expression.txt

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’12, September 9–15, 2012, Copenhagen, Denmark.
Copyright c© 2012 ACM 978-1-4503-1054-3/12/09. . . $10.00

Our motivation for looking at the expression problem is highly
practical. Our research group has developed several embedded
domain-specific languages (EDSLs), for example, Lava [5],
Feldspar [3] and Obsidian [8]. There are several constructs and
operations that occur repeatedly, both between the languages and
within each language. We are interested in factoring out this com-
mon functionality in order to simplify the implementations and to
make the generic parts available to others. A modular design also
makes it easier to try out new features, which is important given
the experimental state of the languages.

In addition to the requirements stated in the expression problem,
a desired property of an extensible data type model is support for
generic traversals. This means that interpretation functions should
only have to mention the “interesting” cases. For example, an
analysis that counts the number of additions in an expression should
only have to specify two cases: (1) the case for addition, and (2) a
generic case for all other constructs.

Our vision is a library of generic building blocks for EDSLs that
can easily be assembled and customized for different domains.
Modular extensibility (as stated in the expression problem) is one
aspect of this vision. Support for generic programming is another
important aspect, as it can reduce the amount of boilerplate code
needed to customize interpretation functions for specific constructs.

This paper proposes a simple model of typed abstract syntax trees
that is extensible and supports generic traversals. The model is
partly derived from Swierstra’s Data Types à la Carte (DTC) [18]
which is an encoding of extensible data types in Haskell. DTC is
based on fixed-points of extensible functors. Our work employs the
extensibility mechanism from DTC, but uses an application tree
(section 2.2) instead of a type-level fixed-point. Given that DTC
(including recent development [4]) already provides extensible data
types and generic traversals, our paper makes the following addi-
tional contributions (see also the comparison in section 10):

• We confirm the versatility of the original DTC invention by
using it in an alternative setting (section 3).

• Our model provides direct access to the recursive structure of
the data types, leading to simpler generic traversals that do not
rely on external generic programming mechanisms (section 4).

• We explore the use of explicit recursion in addition to prede-
fined recursion schemes (sections 5, 6 and 7), demonstrating
that generic traversals over extensible data types are not re-
stricted to predefined recursive patterns.

Our model is available in the SYNTACTIC library2 together with a
lot of utilities for EDSL implementation (section 9). It has been
successfully used in the implementation of Feldspar [3] (sec-
tion 9.1), an EDSL aimed at programming numerical algorithms
in time-critical domains.

2 http://hackage.haskell.org/package/syntactic-1.0

http://www.daimi.au.dk/~madst/tool/papers/expression.txt
http://hackage.haskell.org/package/syntactic-1.0

The code in this paper is available as a literate Haskell file.3 It has
been tested using GHC 7.4.1 (and the mtl package). A number of
GHC-specific extensions are used; see the source code for details.

2. Modeling abstract syntax
It is common for embedded languages to implement an abstract
syntax tree such as the following:

data Expr1 a where
Num1 :: Int → Expr1 Int
Add1 :: Expr1 Int → Expr1 Int → Expr1 Int
Mul1 :: Expr1 Int → Expr1 Int → Expr1 Int

Expr1 is a type of numerical expressions with integer literals, addi-
tion and multiplication. The parameter a is the type of the semantic
value of the expression; i.e. the value obtained by evaluating the
expression. (For Expr1, the semantic value type happens to always
be Int, but we will soon consider expressions with other semantic
types.) Evaluation is defined as a simple recursive function:

evalExpr1 :: Expr1 a → a
evalExpr1 (Num1 n) = n
evalExpr1 (Add1 a b) = evalExpr1 a + evalExpr1 b
evalExpr1 (Mul1 a b) = evalExpr1 a * evalExpr1 b

The problem with types such as Expr1 is that they are not extensi-
ble. It is perfectly possible to add new interpretation functions in the
same way as evalExpr1, but unfortunately, adding new construc-
tors is not that easy. If we want to add a new constructor, say for
subtraction, not only do we need to edit and recompile the defini-
tion of Expr1, but also all existing interpretation functions. Another
problem with Expr1 is the way that the recursive structure of the
tree has been mixed up with the symbols in it: It is not possible to
traverse the tree without pattern matching on the constructors, and
this prevents the definition of generic traversals where only the “in-
teresting” constructors have to be dealt with. We are going to deal
with the problem of generic traversal first, and will then see that the
result also opens up for a solution to the extensibility problem.

2.1 Exposing the tree structure

One way to separate the tree structure from the symbols is to make
symbol application explicit:

data Expr2 a where
Num2 :: Int → Expr2 Int
Add2 :: Expr2 (Int → Int → Int)
Mul2 :: Expr2 (Int → Int → Int)
App2 :: Expr2 (a → b) → Expr2 a → Expr2 b

Here, Add2 and Mul2 are function-valued symbols (i.e. symbols
whose semantic value is a function), and the only thing we can
do with those symbols is to apply them to arguments using App2.
As an example, here is the tree for the expression 3 + 4:

ex1 = App2 (App2 Add2 (Num2 3)) (Num2 4)

What we have gained with this rewriting is the ability to traverse
the tree without necessarily mentioning any symbols. For example,
this function computes the size of an expression:

sizeExpr2 :: Expr2 a → Int
sizeExpr2 (App2 s a) = sizeExpr2 s + sizeExpr2 a
sizeExpr2 _ = 1

3 http://www.cse.chalmers.se/∼emax/documents/axelsson2012generic.lhs

*Main> sizeExpr2 ex1
3

However, even though we have achieved a certain kind of generic
programming, it is limited to a single type, which makes it quite
uninteresting. Luckily, the idea can be generalized.

2.2 The AST model

If we lift out the three symbols from Expr2 and replace them with
a single symbol constructor, we reach the following syntax tree
model:

data AST dom sig where
Sym :: dom sig → AST dom sig
(:$) :: AST dom (a :→ sig) → AST dom (Full a)

→ AST dom sig
infixl 1 :$

The AST type is parameterized on the symbol domain dom, and
the Sym constructor introduces a symbol from this domain. The
type (:→) is isomorphic to the function arrow, and Full a is
isomorphic to a:

newtype Full a = Full {result :: a}
newtype a :→ b = Partial (a → b)
infixr :→

As will be seen later, these types are needed to be able to distinguish
function-valued expressions from partially applied syntax trees.
The AST type is best understood by looking at a concrete example.
NUM is the symbol domain corresponding to the Expr1 type:

data NUM a where
Num :: Int → NUM (Full Int)
Add :: NUM (Int :→ Int :→ Full Int)
Mul :: NUM (Int :→ Int :→ Full Int)

type Expr3 a = AST NUM (Full a)

Expr3 is isomorphic to Expr1 (modulo strictness properties). This
correspondence can be seen by defining smart constructors corre-
sponding to the constructors of the Expr1 type:

num :: Int → Expr3 Int
add :: Expr3 Int → Expr3 Int → Expr3 Int
mul :: Expr3 Int → Expr3 Int → Expr3 Int

num = Sym ◦ Num
add a b = Sym Add :$ a :$ b
mul a b = Sym Mul :$ a :$ b

Symbol types, such as NUM are indexed by symbol signatures built
up using Full and (:→). The signatures of Num and Add are:

Full Int
Int :→ Int :→ Full Int

The signature determines how a symbol can be used in an AST by
specifying the semantic value types of its arguments and result. The
first signature above specifies a terminal symbol that can be used to
make an Int-valued AST, while the second signature specifies a
non-terminal symbol that can be used to make an Int-valued AST
node with two Int-valued sub-terms. The Num constructor also has
an argument of type Int. However, this (being an ordinary Haskell
integer) is to be regarded as a parameter to the symbol rather than
a syntactic sub-term.

http://www.cse.chalmers.se/~emax/documents/axelsson2012generic.lhs

A step-by-step construction of the expression a+ b illustrates how
the type gradually changes as arguments are added to the symbol:

a, b :: AST NUM (Full Int)

Add :: NUM (Int :→ Int :→ Full Int)
Sym Add :: AST NUM (Int :→ Int :→Full Int)
Sym Add :$ a :: AST NUM (Int :→ Full Int)
Sym Add :$ a :$ b :: AST NUM (Full Int)

We recognize a fully applied symbol by a type of the form
AST dom (Full a). Because we are often only interested in com-
plete trees, we define the following shorthand:

type ASTF dom a = AST dom (Full a)

In general, a symbol has a type of the form

T (a :→ b :→ ... :→ Full x)

Such a symbol can be thought of as a model of a constructor of a
recursive reference type Tref of the form

T ref a → T ref b → ... → T ref x

Why is Full only used at the result type of a signature and not the
arguments? After all, we expect all sub-terms to be complete syntax
trees. The answer can be seen in the type of (:$):

(:$) :: AST dom (a :→ sig) → AST dom (Full a)
→ AST dom sig

The a type in the first argument is mapped to (Full a) in the
second argument (the sub-term). This ensures that the sub-term is
always a complete AST, regardless of the signature.
The reason for using (:→) and Full (in contrast to how it was done
in Expr2) is that we want to distinguish non-terminal symbols from
function-valued terminal symbols. This is needed in order to model
the following language:

data Lang a where
Op1 :: Lang Int → Lang Int → Lang Int
Op2 :: Lang (Int → Int → Int)

Here, Op1 is a non-terminal that needs two sub-trees in order to
make a complete syntax tree. Op2 is a function-valued terminal.
This distinction can be captured precisely when using AST:

data LangDom a where
Op1’ :: LangDom (Int :→ Int :→ Full Int)
Op2’ :: LangDom (Full (Int → Int → Int))

type Lang’ a = AST LangDom (Full a)

Without (:→) and Full, the distinction would be lost.

2.3 Simple interpretation

Just as we have used Sym and (:$) to construct expressions, we can
use them for pattern matching:

eval NUM :: Expr3 a → a
eval NUM (Sym (Num n)) = n
eval NUM (Sym Add :$ a :$ b) = eval NUM a + eval NUM b
eval NUM (Sym Mul :$ a :$ b) = eval NUM a * eval NUM b

Note the similarity to evalExpr1. Here is a small example to show
that it works:

*Main> eval NUM (num 5 ‘mul‘ num 6)
30

For later reference, we also define a rendering interpretation:

render NUM :: Expr3 a → String
render NUM (Sym (Num n)) = show n
render NUM (Sym Add :$ a :$ b) =

"(" ++ render NUM a ++ " + " ++ render NUM b ++ ")"
render NUM (Sym Mul :$ a :$ b) =

"(" ++ render NUM a ++ " * " ++ render NUM b ++ ")"

A quick intermediate summary is in order. We have shown a
method of encoding recursive data types using the general AST
type. The encoding has a one-to-one correspondence to the origi-
nal type, and because of this correspondence, we intend to define
languages only using AST, without the existence of an encoded ref-
erence type. However, for any type (ASTF dom), a corresponding
reference type can always be constructed. So far, it does not look
like we have gained much from this exercise, but remember that
the goal is to enable extensible languages and generic traversals.
This will be done in the two following sections.

3. Extensible languages

In the quest for enabling the definition of extensible languages, the
AST type has put us in a better situation. Namely, the problem has
been reduced from extending recursive data types, such as Expr1,
to extending non-recursive types, such as NUM. Fortunately, this
problem has already been solved in Data Types à la Carte (DTC).
DTC defines the type composition operator in Listing 1, which
can be seen as a higher-kinded version of the Either type. We
demonstrate its use by defining two new symbol domains:

data Logic a where -- Logic expressions
Not :: Logic (Bool :→ Full Bool)
Eq :: Eq a ⇒ Logic (a :→ a :→ Full Bool)

data If a where -- Conditional expression
If :: If (Bool :→ a :→ a :→ Full a)

These can now be combined with NUM to form a larger domain:

type Expr a = ASTF (NUM :+: Logic :+: If) a

A corresponding reference type (which we do not need to define)
has all constructors merged at the same level:

data Expr ref a where
Num :: Int → Expr ref Int
Add :: Expr ref Int → Expr ref Int → Expr ref Int
...

Not :: Expr ref Bool → Expr ref Bool
...

If :: Expr ref Bool → Expr ref a → Expr ref a
→ Expr ref a

Unfortunately, the introduction of (:+:) means that constructing
expressions becomes more complicated:4

not :: Expr Bool → Expr Bool
not a = Sym (InjR (InjL Not)) :$ a

cond :: Expr Bool → Expr a → Expr a → Expr a
cond c t f = Sym (InjR (InjR If)) :$ c :$ t :$ f

data (dom1 :+: dom2) a where
InjL :: dom1 a → (dom1 :+: dom2) a
InjR :: dom2 a → (dom1 :+: dom2) a

infixr :+:

Listing 1: Composition of symbol domains (part of DTC interface)

class (sub :<: sup) where
inj :: sub a → sup a
prj :: sup a → Maybe (sub a)

instance (expr :<: expr) where
inj = id
prj = Just

instance (sym :<: (sym :+: dom)) where
inj = InjL
prj (InjL a) = Just a
prj _ = Nothing

instance (sym1 :<: dom)
⇒ (sym1 :<: (sym2 :+: dom)) where

inj = InjR ◦ inj
prj (InjR a) = prj a
prj _ = Nothing

-- Additional instance for AST
instance (sub :<: sup) ⇒ (sub :<: AST sup) where
inj = Sym ◦ inj
prj (Sym a) = prj a
prj _ = Nothing

Listing 2: Symbol subsumption (part of DTC interface)

The symbols are now tagged with injection constructors, and the
amount of injections will only grow as the domain gets larger. For-
tunately, DTC has a solution to this problem too. The (:<:) class,
defined in Listing 2, provides the inj function which automates the
insertion of injections based on the types. The final instance also
takes care of injecting the Sym constructor from the AST type. We
can now define not as follows:

not :: (Logic :<: dom)
⇒ ASTF dom Bool → ASTF dom Bool

not a = inj Not :$ a

The prj function in Listing 2 is the partial inverse of inj. Just
like inj allows one to avoid a nest of InjL/InjR constructors in
construction, prj avoids a nest of injection constructors in pattern
matching (see section 3.2). The instances of (:<:) essentially per-
form a linear search at the type level to find the right injection.
Overlapping instances are used to select the base case.
The remaining constructs of the Expr language are defined in List-
ing 3. Note that the types have now become more general. For ex-
ample, the type

(⊕) :: (NUM :<: dom)
⇒ ASTF dom Int → ASTF dom Int → ASTF dom Int

4 Here we override the not function from the Prelude. The Prelude function
will be used qualified in this paper.

num :: (NUM :<: dom) ⇒ Int → ASTF dom Int

(⊕) :: (NUM :<: dom)
⇒ ASTF dom Int → ASTF dom Int → ASTF dom Int

(�) :: (NUM :<: dom)
⇒ ASTF dom Int → ASTF dom Int → ASTF dom Int

(≡) :: (Logic :<: dom, Eq a)
⇒ ASTF dom a → ASTF dom a → ASTF dom Bool

condition :: (If :<: dom)
⇒ ASTF dom Bool
→ ASTF dom a → ASTF dom a → ASTF dom a

num = inj ◦ Num
a ⊕ b = inj Add :$ a :$ b
a � b = inj Mul :$ a :$ b
a ≡ b = inj Eq :$ a :$ b
condition c t f = inj If :$ c :$ t :$ f

infixl 6 ⊕
infixl 7 �

Listing 3: Extensible language front end

says that (⊕) works with any domain dom that contains NUM. Infor-
mally, this means any domain of the form

... :+: NUM :+: ...

Expressions only involving numeric operations will only have a NUM
constraint on the domain:

ex2 :: (NUM :<: dom) ⇒ ASTF dom Int
ex2 = (num 5 ⊕ num 0) � num 6

This means that such expressions can be evaluated by the earlier
function evalNUM, which only knows about NUM:

*Main> eval NUM ex2
30

Still, the type is general enough that we are free to use ex2 together
with non-numeric constructs:

ex3 = ex2 ≡ ex2

The class constraints compose as expected:

*Main> :t ex3
ex3 :: (Logic :<: dom, NUM :<: dom) ⇒ ASTF dom Bool

That is, ex3 is a valid expression in any language that includes
Logic and NUM.

3.1 Functions over extensible languages

The evaluation function evalNUM is closed and works only for the
NUM domain. By making the domain type polymorphic, we can
define functions over open domains. The simplest example is size,
which is completely parametric in the dom type:

size :: AST dom a → Int
size (Sym _) = 1
size (s :$ a) = size s + size a

*Main> size (ex2 :: Expr3 Int)
5

*Main> size (ex3 :: Expr Bool)
11

But most functions we want to define require some awareness of
the symbols involved. If we want to count the number of additions
in an expression, say, we need to be able to tell whether a given
symbol is an addition. This is where the prj function comes in:

countAdds :: (NUM :<: dom) ⇒ AST dom a → Int
countAdds (Sym s)

| Just Add ← prj s = 1
| otherwise = 0

countAdds (s :$ a) = countAdds s + countAdds a

In the symbol case, the prj function attempts to project the symbol
to the NUM type. If it succeeds (returning Just) and the symbol is
Add, 1 is returned; otherwise 0 is returned. Note that the type is as
general as possible, with only a NUM constraint on the domain. Thus,
it accepts terms from any language that includes NUM:

*Main> countAdds (ex2 :: Expr3 Int)
1

*Main> countAdds (ex3 :: Expr Bool)
2

We have now fulfilled all requirements of the expression problem:

• We have the ability to extend data types with new cases, and to
define functions over such open types.

• We can add new interpretations (this was never a problem).

• Extension does not require recompilation of existing code. For
example, the NUM, Logic and If types could have been defined
in separate modules. The function countAdds is completely in-
dependent of Logic and If. Still, it can be used with expressions
containing those constructs (such as ex3).

• We have not sacrificed any type-safety.

3.2 Pattern matching

The encoding we use does come with a certain overhead. This is
particularly visible when doing nested pattern matching. Here is a
function that performs the optimization x+ 0 → x:

optAddTop :: (NUM :<: dom) ⇒ ASTF dom a → ASTF dom a
optAddTop (add :$ a :$ b)
| Just Add ← prj add
, Just (Num 0) ← prj b = a

optAddTop a = a

(This function only rewrites the top-most node; in section 6.2, we
will see how to apply the rewrite across the whole expression.) Note
the sequencing of the pattern guards. An alternative is to use the
ViewPatterns extension to GHC instead:

optAddTop
((prj→ Just Add) :$ a :$ (prj→ Just (Num 0))) = a

optAddTop a = a

While view patterns have the advantage that they can be nested,
doing so tends to lead to long lines. For this reason, it is ofter
preferable to use a sequence of pattern guards.

4. Generic traversals
We will now see how to define various kinds of generic traversals
over the AST type. In this section, we will only deal with fold-
like traversals (but they are defined using explicit recursion). In
sections 5 and 7, we will look at more general types of traversals.
According to Hinze and Löh [9], support for generic programming
consists of two essential ingredients: (1) a way to write overloaded
functions, and (2) a way to access the structure of values in a
uniform way. Together, these two components allow functions to
be defined over a (possibly open) set of types, for which only the
“interesting” cases need to be given. All other cases will be covered
by a single (or a few) default case(s).
We have already encountered some generic functions in this paper.
For example, size works for all possible AST types, and countAdds
works for all types (AST dom) where the constraint (NUM :<: dom)
is satisfied.5 For size, all cases are covered by the default cases,
while countAdds has one special case, and all other cases have
default behavior.
An important aspect of a generic programming model is whether
or not new interesting cases can be added in a modular way. The
countAdds function has a single interesting case, and there is no
way to add more of them. We will now see how to define functions
for which the interesting cases can be extended for new types. We
begin by looking at functions for which all cases are interesting.

4.1 Generic interpretation

The interpretation functions evalNUM and renderNUM are defined for
a single, closed domain. To make them extensible, we need to make
the domain abstract, just like we did in countAdds. However, we do
not want to use prj to match out the interesting cases, because now
all cases are interesting. Instead, we factor out the evaluation of the
symbols to a user-provided function. What is left is a single case
for Sym and one for (:$):

evalG :: (∀a . dom a → Denotation a)
→ (∀a . AST dom a → Denotation a)

evalG f (Sym s) = f s
evalG f (s :$ a) = evalG f s $ evalG f a

type family Denotation sig
type instance Denotation (Full a) = a
type instance Denotation (a :→ sig) =

a → Denotation sig

The Denotation type function strips away (:→) and Full from a
signature. As an example, we let GHCi compute the denotation of
(Int :→ Full Bool):

*Main> :kind! Denotation (Int :→ Full Bool)
Denotation (Int :→ Full Bool) :: *
= Int → Bool

Next, we define the evaluation of NUM symbols as a separate func-
tion:

evalSym NUM :: NUM a → Denotation a
evalSym NUM (Num n) = n
evalSym NUM Add = (+)
evalSym NUM Mul = (*)

5 One can argue that these functions are not technically generic, because
they only work for instances of the AST type constructor. However, because
we use AST as a way to encode hypothetical reference types, we take the
liberty to call such functions generic anyway.

Because this definition only has to deal with non-recursive sym-
bols, it is very simple compared to evalNUM. We can now plug the
generic and the type-specific functions together and use them to
evaluate expressions:

*Main> evalG evalSym NUM ex2
30

Our task is to define an extensible evaluation that can easily be
extended with new cases. We have now reduced this problem to
making the evalSymNUM function extensible. The way to do this is
to put it in a type class:

class Eval expr where
eval :: expr a → Denotation a

instance Eval NUM where
eval (Num n) = n
eval Add = (+)
eval Mul = (*)

instance Eval Logic where
eval Not = Prelude.not
eval Eq = (==)

instance Eval If where
eval If = λc t f → if c then t else f

Now that we have instances for all our symbol types, we also need
to make sure that we can evaluate combinations of these types using
(:+:). The instance is straightforward:

instance (Eval sub1, Eval sub2)
⇒ Eval (sub1 :+: sub2) where

eval (InjL s) = eval s
eval (InjR s) = eval s

We can even make an instance for AST, which then replaces the
evalG function:

instance Eval dom ⇒ Eval (AST dom) where
eval (Sym s) = eval s
eval (s :$ a) = eval s $ eval a

Now everything is in place, and we should be able to evaluate
expressions using a mixed domain:

*Main> eval (ex3 :: Expr Bool)
True

4.2 Finding compositionality

One nice thing about eval is that it is completely compositional
over the application spine of the symbol. This means that even par-
tially applied symbols have an interpretation. For example, the par-
tially applied symbol (inj Add :$ num 5) evaluates to the deno-
tation (5 +). We call such interpretations spine-compositional.
When making a generic version of renderNUM we might try to use
the following interface:

class Render expr where
render :: expr a → String

However, the problem with this is that rendering is not spine-
compositional: It is generally not possible to render a partially
applied symbol as a monolithic string. For example, a symbol
representing an infix operator will join its sub-expression strings

differently from a prefix operator symbol. A common way to get
to a spine-compositional interpretation is to make the renderings of
the sub-expressions explicit in the interpretation. That is, we use
([String] → String) as interpretation:

class Render expr where
renderArgs :: expr a → ([String] → String)

render :: Render expr ⇒ expr a → String
render a = renderArgs a []

Now, the joining of the sub-expressions can be chosen for each case
individually. The following instances use a mixture of prefix (Not),
infix (Add, Mul, Eq) and mixfix rendering (If):

instance Render NUM where
renderArgs (Num n) [] = show n
renderArgs Add [a,b] = "(" ++ a ++ " + " ++ b ++ ")"
renderArgs Mul [a,b] = "(" ++ a ++ " * " ++ b ++ ")"

instance Render Logic where
renderArgs Not [a] = "(not " ++ a ++ ")"
renderArgs Eq [a,b] = "(" ++ a ++ " == " ++ b ++ ")"

instance Render If where
renderArgs If [c,t,f] = unwords

["(if", c, "then", t, "else", f ++ ")"]

Although convenient, it is quite unsatisfying to have to use refutable
pattern matching on the argument lists. We will present a solution
to this problem in section 6.
The instance for AST traverses the spine, collecting the rendered
sub-terms in a list that is passed on to the rendering of the symbol:

instance Render dom ⇒ Render (AST dom) where
renderArgs (Sym s) as = renderArgs s as
renderArgs (s :$ a) as = renderArgs s (render a:as)

Note that the case for (:$) has two recursive calls. The call to
renderArgs is for traversing the application spine, and the call
to render is for rendering the sub-terms. The Render instance
for (:+:) is analogous to the Eval instance, so we omit it. This
concludes the definition of rendering for extensible languages.

*Main> render (ex2 :: Expr Int)
"((5 + 0) * 6)"

The functions eval and render do not have any generic default
cases, because all cases have interesting behavior. The next step is
to look at a function that has useful generic default cases.

4.3 Case study: Extensible compiler

Will now use the presented techniques to define a simple compiler
for our extensible expression language. The job of the compiler is
to turn expressions into a sequence of variable assignments:

*Main> putStr $ compile (ex2 :: Expr Int)
v3 = 5
v4 = 0
v1 = (v3 + v4)
v2 = 6
v0 = (v1 * v2)

Listing 4 defines the type CodeGen along with some utility func-
tions. A CodeGen is a function from a variable identifier (the result
location) to a monadic expression that computes the program as a

list of strings.6 The monad also has a state in order to be able to
generate fresh variables.
Listing 5 defines the fully generic parts of the compiler. Note the
similarity between the types of compileArgs and renderArgs. One
difference between the Compile and Render classes is that Compile
has a default implementation of its method. The default method
assumes that the symbol represents a simple expression, and uses
renderArgs to render it as a string. The rendered expression is then
assigned to the result location using (=:=). The instances for AST
and (:+:) are analogous to those of the Render class. Finally, the
compile function takes care of running the CodeGen and extracting
the written program.
The code in Listings 4 and 5 is completely generic—it does not
mention anything about the symbols involved, apart from the as-
sumption of them being instances of Compile. In Listing 6 we give
the specific instances for the symbol types defined earlier. Because
NUM and Logic are simple expression types, we rely on the default
behavior for these. For If, we want to generate an if statement
rather than an expression with an assignment. This means that we
cannot use the default case, so we have to provide a specific case.
A simple test will demonstrate that the compiler works as intended:

ex4 = condition (num 1 ≡ num 2) (num 3) ex2

*Main> putStr $ compile (ex4 :: Expr Int)
v2 = 1
v3 = 2
v1 = (v2 == v3)
if v1 then

v0 = 3
else

v6 = 5
v7 = 0
v4 = (v6 + v7)
v5 = 6
v0 = (v4 * v5)

5. Implicit and explicit recursion
So far, our functions have all been defined using explicit recursion.
But there is nothing stopping us from defining convenient recursion
schemes as higher-order functions. For example, the AST instances
for renderArgs and compileArgs (see section 4) both perform the
same kind of fold-like bottom-up traversal which can be captured
by the general combinator fold:

fold :: ∀dom b . (∀a . dom a → [b] → b)
→ (∀a . ASTF dom a → b)

fold f a = go a []
where
go :: ∀a . AST dom a → [b] → b
go (Sym s) as = f s as
go (s :$ a) as = go s (fold f a : as)

Note, again, the two recursive calls in the case for (:$): the call
to go for traversing the spine, and the call to fold for folding
the sub-terms. Despite the traversal of the spine, fold should not
be confused with a “spine fold” such as gfoldl from Scrap Your
Boilerplate [11]. Rather, we are folding over the whole syntax tree,
and go is just used to collect the sub-results in a list. This way of
using ordinary lists to hold the result of sub-terms is also used in
the Uniplate library [15] (see the para combinator).

6 Thanks to Dévai Gergely for the technique of parameterizing the compiler
on the result location.

type VarId = Integer
type ResultLoc = VarId
type Program = [String]
type CodeMonad = WriterT Program (State VarId)
type CodeGen = ResultLoc → CodeMonad ()

freshVar :: CodeMonad VarId
var :: VarId → String
(=:=) :: VarId → String → String
indent :: Program → Program

freshVar = do v ← get; put (v+1); return v
var v = "v" ++ show v
v =:= expr = var v ++ " = " ++ expr
indent = map (" " ++)

Listing 4: Extensible compiler: interpretation and utility functions

class Render expr ⇒ Compile expr where
compileArgs :: expr a → ([CodeGen] → CodeGen)
compileArgs expr args loc = do

argVars ← replicateM (length args) freshVar
zipWithM ($) args argVars
tell [loc =:= renderArgs expr (map var argVars)]

instance Compile dom ⇒ Compile (AST dom) where
compileArgs (Sym s) args loc =

compileArgs s args loc
compileArgs (s :$ a) args loc = do

compileArgs s (compileArgs a [] : args) loc

instance (Compile sub1, Compile sub2)
⇒ Compile (sub1 :+: sub2) where

compileArgs (InjL s) = compileArgs s
compileArgs (InjR s) = compileArgs s

compile :: Compile expr ⇒ expr a → String
compile expr = unlines

$ flip evalState 1
$ execWriterT
$ compileArgs expr [] 0

Listing 5: Extensible compiler: generic code

instance Compile NUM
instance Compile Logic

instance Compile If where
compileArgs If [cGen,tGen,fGen] loc = do
cVar ← freshVar
cGen cVar
tProg ← lift $ execWriterT $ tGen loc
fProg ← lift $ execWriterT $ fGen loc
tell $ [unwords ["if", var cVar, "then"]]

++ indent tProg
++ ["else"]
++ indent fProg

Listing 6: Extensible compiler: type-specific code

As a demonstration, we show how to redefine render and compile
in terms of fold:

render2 :: Render dom ⇒ ASTF dom a → String
render2 = fold renderArgs

compile2 :: Compile dom ⇒ ASTF dom a → String
compile2 a = unlines

$ flip evalState 1
$ execWriterT
$ fold compileArgs a 0

Here, renderArgs and compileArgs are only used as algebras (of
type (dom a → [...] → ...)), which means that the Render
and Compile instances for AST are no longer needed.
Despite the usefulness of functions like fold, it is important to
stress that our traversals are by no means restricted to fold-like
patterns. We can fall back to explicit recursion, or define new
custom recursion schemes, whenever needed. As an example of a
function that does not suit the fold pattern, we define term equality.
The generic code is as follows:

class Equality expr where
equal :: expr a → expr b → Bool

instance Equality dom ⇒ Equality (AST dom) where
equal (Sym s1) (Sym s2) = equal s1 s2
equal (s1 :$ a1) (s2 :$ a2) =

equal s1 s2 && equal a1 a2
equal _ _ = False

instance (Equality sub1, Equality sub2)
⇒ Equality (sub1 :+: sub2) where

equal (InjL s1) (InjL s2) = equal s1 s2
equal (InjR s1) (InjR s2) = equal s1 s2
equal _ _ = False

And, once the generic code is in place, the type-specific instances
are trivial; for example:

instance Equality NUM where
equal (Num n1) (Num n2) = n1 == n2
equal Add Add = True
equal Mul Mul = True
equal _ _ = False

We see that term equality comes out very naturally as an explicitly
recursive function. Expressing this kind of recursion (simultaneous
traversal of two terms) in terms of fold is possible, but quite
tricky (for a general method, see the generic version of zipWith
in reference [12]). In section 7, we will see another example where
explicit recursion is useful.

6. Regaining type-safety
The use of a list to hold the interpretation of sub-terms (used by, for
example, renderArgs and fold) has the problem that it loses type
information about the context. This has two problems:
• The algebra function can never know whether it receives the ex-

pected number of arguments (see the refutable pattern matching
in implementations of renderArgs).
• All intermediate results are required to have the same type and

cannot depend on the type of the individual sub-expressions.
We can make the problem concrete by looking at the local function
go that traverses the spine in fold:

go :: ∀a . AST dom a → [b] → b
go (Sym s) as = f s as
go (s :$ a) as = go s (fold f a : as)

Now, consider folding an expression with Add as its top-level sym-
bol: fold f (Sym Add :$ x :$ y), for some algebra f and sub-
expressions x and y. This leads to the following unfolding of go:

go (Sym Add :$ x :$ y) [] =
go (Sym Add :$ x) [fold f y] =
go (Sym Add) [fold f x, fold f y]

In this sequence of calls, go is used at the following types:

go :: AST dom (Full Int) → [b] → b
go :: AST dom (Int :→ Full Int) → [b] → b
go :: AST dom (Int :→ Int :→ Full Int) → [b] → b

We see that the type of the term gradually changes to reflect that
sub-terms are stripped away; the number of arrows (:→) deter-
mines the number of missing sub-terms. However, the type of the
list remains the same, even though its contents grows in each it-
eration. This is the root of the problem with fold. What we need
instead is a list-like type—we will call it Args,—indexed by a sym-
bol signature, and with the property that the number of arrows de-
termines the number of elements in the list.
With such a list type, the go function will get a type of this form:

go :: ∀a . AST dom a → Args a → ...

Specifically, in the last recursive call in the above example, go will
have the type:

go :: AST dom (Int :→ Int :→ Full Int)
→ Args (Int :→ Int :→ Full Int)
→ ...

The first argument is an expression that is missing two sub-terms,
and the intention is that the second argument is a two-element list
containing the result of folding those particular sub-terms.

6.1 Typed argument lists

A definition of Args that fulfills the above specification is the
following:

data Args c sig where
Nil :: Args c (Full a)
(:*) :: c (Full a) → Args c sig

→ Args c (a :→ sig)
infixr :*

Here we have added a parameter c which is the type constructor for
the elements. The elements are of type c (Full a) where a varies
with the position in the signature. Each cons cell (:*) imposes
an additional arrow (:→) in the signature, which shows that the
number of elements is equal to the number of arrows. Here is an
example of a list containing an integer and a Boolean, using Maybe
as type constructor:

argEx :: Args Maybe (Int :→ Bool :→ Full Char)
argEx = Just (Full 5) :* Just (Full False) :* Nil

The reason for making the elements indexed by Full a rather than
just a is to be able to have lists with expressions in them. It is
not possible to use (ASTF dom) as the type constructor c because
ASTF is a type synonym, and, as such, cannot be partially applied.
But because the elements are indexed by Full a, we can instead
use (AST dom) as type constructor. Lists of type Args (AST dom)
are used, for example, when using recursion schemes to transform
expressions as we will do in the following section.

6.2 Type-safe fold

We are now ready to define a typed version of fold:

typedFold :: ∀dom c
. (∀a . dom a → Args c a → c (Full (Result a)))
→ (∀a . ASTF dom a → c (Full a))

typedFold f a = go a Nil
where
go :: ∀a . AST dom a → Args c a

→ c (Full (Result a))
go (Sym s) as = f s as
go (s :$ a) as = go s (typedFold f a :* as)

Note the close correspondence to the definition of the original
fold. The Result type function simply gives the result type of a
signature:

type family Result sig
type instance Result (Full a) = a
type instance Result (a :→ sig) = Result sig

*Main> :kind! Result (Int :→ Full Bool)
Result (Int :→ Full Bool) :: *
= Bool

The Args list ensures that the algebra will always receive the ex-
pected number of arguments. Furthermore, the elements in the
Args list are now indexed by the type of the corresponding sub-
expressions. In particular, this means that we can use typedFold
to transform expressions without losing any type information. As
a demonstration, we define the function everywhere that applies a
function uniformly across an expression. It corresponds to the com-
binator with the same name in Scrap Your Boilerplate [11]:

everywhere :: (∀a . ASTF dom a → ASTF dom a)
→ (∀a . ASTF dom a → ASTF dom a)

everywhere f = typedFold (λs → f ◦ appArgs (Sym s))

appArgs :: AST dom sig → Args (AST dom) sig
→ ASTF dom (Result sig)

appArgs a Nil = a
appArgs s (a :* as) = appArgs (s :$ a) as

The algebra receives the symbol and its transformed arguments.
The general function appArgs is used to apply the symbol to the
folded arguments, and f is applied to the newly built expression.
We can now use everywhere to apply optAddTop from section 3.2
bottom-up over a whole expression:

*Main> render (ex3 :: Expr Bool)
"(((5 + 0) * 6) == ((5 + 0) * 6))"

*Main> render $ everywhere optAddTop (ex3::Expr Bool)
"((5 * 6) == (5 * 6))"

For the cases when we are not interested in type-indexed results,
we define a version of typedFold with a slightly simplified type:

newtype Const a b = Const { unConst :: a }

typedFoldSimple :: ∀dom b
. (∀a . dom a → Args (Const b) a → b)
→ (∀a . ASTF dom a → b)

typedFoldSimple f =
unConst ◦ typedFold (λs → Const ◦ f s)

Using typedFoldSimple, we can finally define a version of Render
that avoids refutable pattern matching (here showing only the NUM
instance):

class Rendersafe sym where
renderArgssafe ::

sym a → Args (Const String) a → String

instance Rendersafe NUM where
renderArgssafe (Num n) Nil = show n
renderArgssafe Add (Const a :* Const b :* Nil) =

"(" ++ a ++ " + " ++ b ++ ")"
renderArgssafe Mul (Const a :* Const b :* Nil) =

"(" ++ a ++ " * " ++ b ++ ")"

rendersafe :: Rendersafe dom ⇒ ASTF dom a → String
rendersafe = typedFoldSimple renderArgssafe

7. Controlling the recursion
All generic recursive functions that we have seen so far have one
aspect in common: the recursive calls are fixed, and cannot be
overridden by new instances. The recursive calls are made in the
instances for AST and (:+:), and these are not affected by the
instances for the symbol types. To have full freedom in writing
generic recursive functions, one needs to be able to control the
recursive calls on a case-by-case basis. This can be achieved by
a simple change to typedFold: simply drop the recursive call to
typedFold and replace it with the unchanged sub-term:

query :: ∀dom a c
. (∀b . (a ~ Result b)

⇒ dom b → Args (AST dom) b → c (Full a))
→ ASTF dom a → c (Full a)

query f a = go a Nil
where
go :: (a ~ Result b)
⇒ AST dom b → Args (AST dom) b → c (Full a)

go (Sym a) as = f a as
go (s :$ a) as = go s (a :* as)

In typedFold, the function f is applied across all nodes, which
is why it is polymorphic in the symbol signature. In the case of
query, f is only used at the top-level symbol, which is why we can
allow the constraint (a ~ Result b) (the scope of a is now the
whole definition). This constraint says that the top-most symbol
has the same result type as the whole expression. By reducing the
required polymorphism, we make query applicable to a larger set
of functions. We note in passing that typedFold can be defined in
terms of query, but leave the definition out of the paper.
One example where query is useful is when defining generic
context-sensitive traversals. As a slightly contrived example, imag-
ine that we want to change the previously defined optimization
everywhere optAddTop so that it is performed everywhere, except
in certain sub-expressions. Also imagine that we want each symbol
to decide for itself whether to perform the optimization in its sub-
terms, and we want to be able to add cases for new symbol types in
a modular way.
Because we need to be able to add new cases, we use a type class:

class OptAdd sym dom where
optAddSym :: sym a → Args (AST dom) a

→ AST dom (Full (Result a))

(The need for the second parameter will be explained shortly.)
The idea is that the class method returns the optimized expression
given the top-level symbol and its sub-terms. However, we do
not want to use optAddSym as the algebra in typedFold. This is
because typedFold traverses the expression bottom-up, and when

the function is to join the results of a symbol and its sub-terms, it
is already too late to decide that certain sub-terms should remain
unoptimized. Rather, we have to let optAddSym receive a list of
unoptimized sub-terms, so that it can choose whether or not to
recurse depending on the symbol.
We can now use query to lift optAddSym to operate on a complete
syntax tree:

optAdd :: OptAdd dom dom ⇒ ASTF dom a → ASTF dom a
optAdd = query optAddSym

Before we define instances of the OptAdd class we need a default
implementation of its method:

optAddDefault :: (sym :<: dom, OptAdd dom dom)
⇒ sym a → Args (AST dom) a

→ AST dom (Full (Result a))
optAddDefault s = appArgs (Sym (inj s))

◦ mapArgs optAdd

This function calls optAdd recursively for all arguments and then
applies the symbol to the optimized terms. The mapArgs function is
used to map a function over an Args list:

mapArgs :: (∀a . c1 (Full a) → c2 (Full a))
→ (∀a . Args c1 a → Args c2 a)

mapArgs f Nil = Nil
mapArgs f (a :* as) = f a :* mapArgs f as

In the optimization of NUM, we make a special case for addition
with zero, and call the default method for all other cases. The
optimization of Logic uses only the default method.

instance (NUM :<: dom, OptAdd dom dom)
⇒ OptAdd NUM dom where

optAddSym Add (a :* zero :* Nil)
| Just (Num 0) ← prj zero = optAdd a

optAddSym s as = optAddDefault s as

instance (Logic :<: dom, OptAdd dom dom)
⇒ OptAdd Logic dom where

optAddSym = optAddDefault

Now, to show the point of the whole exercise, imagine we want
to avoid optimization in the branches of a conditional. With the
current setup, this is completely straightforward:

instance (If :<: dom, OptAdd dom dom)
⇒ OptAdd If dom where

optAddSym If (c :* t :* f :* Nil) =
appArgs (Sym (inj If))

(optAdd c :* t :* f :* Nil)

This instance chooses to optimize only the condition, while the two
branches are passed unoptimized.
The instance for (:+:) concludes the definition of optAdd:

instance (OptAdd sub1 dom, OptAdd sub2 dom)
⇒ OptAdd (sub1 :+: sub2) dom where

optAddSym (InjL a) = optAddSym a
optAddSym (InjR a) = optAddSym a

The purpose of the second parameter of the OptAdd class is to let
instances declare constraints on the whole domain. This is needed,
for example, to be able to pattern match on the sub-terms, as the
NUM instance does. As a nice side effect, it is even possible to pattern
match on constructors from a different symbol type. For example,
in the If instance, we can pattern match on Num simply by declaring
(NUM :<: dom) in the class context:

instance (If :<: dom, NUM :<: dom, OptAdd dom dom)
⇒ OptAdd If dom where

optAddSym If (cond :* t :* f :* Nil)
| Just (Num 0) ← prj t = . . .

8. Mutually recursive types
Many languages are naturally defined as a set of mutually recursive
types. For example, the following is a language with expressions
and imperative statements:

type Var = String

data Expr a where
Num :: Int → Expr Int
Add :: Expr Int → Expr Int → Expr Int
Exec :: Var → Stmt → Expr a

data Stmt where
Assign :: Var → Expr a → Stmt
Seq :: Stmt → Stmt → Stmt

The purpose of the Exec construct is to return the contents of
the given variable after executing the imperative program. Assign
writes the result of an expression to the given variable. In the AST
model, it is not directly possible to group the symbols so that only
some of them are available at a given node. However, it is possible
to use type-level “tags” to achieve the same effect. In the encoding
below, the types in the symbol signatures are tagged with E or S
depending on whether they represent expressions or statements.

data E a -- Expression tag
data S -- Statement tag

data ExprDom a where
NumSym :: Int → ExprDom (Full (E Int))
AddSym :: ExprDom (E Int :→ E Int :→Full (E Int))
ExecSym :: Var → ExprDom (S :→ Full (E a))

data StmtDom a where
AssignSym :: Var → StmtDom (E a :→ Full S)
SeqSym :: StmtDom (S :→ S :→ Full S)

type Expr enc a = ASTF (ExprDom :+: StmtDom) (E a)
type Stmt enc = ASTF (ExprDom :+: StmtDom) S

For example, ExecSym has the signature (S :→ ...), which means
that its argument must be one of the symbols from StmtDom, since
these are the only symbols that result in Full S. Because the tags
above reflect the structure of the Expr and Stmt types, we conclude
that Exprenc and Stmtenc are isomorphic to those types. Following
this recipe, it is possible to model arbitrary mutually recursive
syntax trees using AST.

9. The SYNTACTIC library
The abstract syntax model presented in this paper is available in the
SYNTACTIC library, available on Hackage7. In addition to the AST
type and the generic programming facilities, the library provides
various building blocks for implementing practical EDSLs:
• Language constructs (conditionals, tuples, etc.)
• Interpretations (evaluation, equivalence, rendering, etc.)

7 http://hackage.haskell.org/package/syntactic-1.0

http://hackage.haskell.org/package/syntactic-1.0

• Transformations (constant folding, code motion, etc.)
• Utilities for host-language interaction (the Syntactic

class [2, 16], observable sharing, etc.)

Being based on the extensible AST type, these building blocks are
generic, and can quite easily be customized for different languages.
A particular aim of SYNTACTIC is to simplify the implementa-
tion of languages with binding constructs. To this end, the library
provides constructs for defining higher-order abstract syntax, and
a number of generic interpretations and transformations for lan-
guages with variable binding.

9.1 Practical use-case: Feldspar

Feldspar [3] is an EDSL for high-performance numerical compu-
tation, in particular for embedded digital signal processing appli-
cations. Version 0.5.0.18 is implemented using SYNTACTIC. Some
details about the implementation can be found in reference [2].
A demonstration of the advantage of a modular language im-
plementation is given in reference [16], where we show how to
add monadic constructs and support for mutable data structures to
Feldspar without changing the existing implementation.

As a concrete example from the implementation, here is a func-
tional for loop used for iterative computations:

data Loop a where
ForLoop :: Type st ⇒

Loop (Length -- # iterations
:→ st -- initial state
:→ (Index → st → st) -- step function
:→ Full a) -- final state

The first argument is the number of iterations; the second argument
the initial state. The third argument is the step function which,
given the current loop index and state, computes the next state.
The third argument is of function type, which calls for a way of
embedding functions as AST terms. SYNTACTIC provides different
ways of doing so, but the nice thing—and a great advantage of
using SYNTACTIC—is that the embedding of functions is handled
completely independently of the definition of ForLoop.

Feldspar has a back end for generating C code. It is divided in two
main stages: (1) generating an intermediate imperative representa-
tion (used for low-level optimization, etc.), and (2) generating C
code. It is worth noting that the first of these two stages uses the
same basic principles as the compiler in section 4.3.

10. Related work

Data Types à la Carte [18] (DTC) is an encoding of extensible
data types in Haskell. Our syntax tree model inherits its extensi-
bility from DTC. Bahr and Hvitved [4] show that DTC supports
generic traversals with relatively low overhead using the Foldable
and Traversable classes. Our model differs by providing generic
traversals directly, without external assistance. Given that instances
for said type classes can be generated automatically (as Bahr and
Hvitved do), the difference is by no means fundamental. Still, our
method can generally be considered to be more lightweight with
slightly less encoding overhead. The original DTC paper only con-
sidered untyped expressions. Bahr and Hvitved extend the model to
account for typed syntax trees (as all trees in this paper are). This
change also lets them handle mutually recursive types in essentially
the same way as we describe in section 8.

8 http://hackage.haskell.org/package/feldspar-language-0.5.0.1

The DTC literature has focused on using recursion schemes rather
than explicit recursion for traversing data types. Although exam-
ples of explicit recursion exist (see the render function in refer-
ence [18]), the combination of explicit recursion and generic traver-
sals appears to be rather unexplored. In this paper we have shown
how to support this combination, demonstrating that generic traver-
sals over extensible data types are not restricted to predefined recur-
sive patterns.
Lämmel and Ostermann [13] give a solution to the expression
problem based on Haskell type classes. The basic idea is to have
a non-recursive data type for each constructor, and a type class
representing the open union of all constructors. Interpretations are
added by introducing sub-classes of the union type class. This
method can be combined with existing frameworks for generic
programming.9 One drawback with the approach is that expression
types reflect the exact structure of the expressions, and quite some
work is required to manage these heterogeneous types.
Yet another method for defining fully extensible languages is Fi-
nally Tagless [7], which associates each group of language con-
structs with a type class, and each interpretation with a seman-
tic domain type. Extending the language constructs is done by
adding new type classes, and extending the interpretations is done
by adding new instances. In contrast to DTC and our model, this
technique limits interpretations to compositional bottom-up traver-
sals. (Note, though, that this limit is mostly of practical interest.
With a little creativity, it is possible to express even apparently non-
compositional interpretations compositionally [10].)
There exist a number of techniques for data-type generic program-
ming in Haskell (see, for example, references [11, 14]). An exten-
sive, though slightly dated, overview is given in reference [17].
However, these techniques do not qualify as solutions to the ex-
pression problem, as they do not provide a way to extend existing
types with new constructors. Rather, the aim is to define generic
algorithms that work for many different types. The spine view [9] is
a generic view for the Scrap Your Boilerplate [11] style of generic
programming. The Spine type has strong similarities to our AST
type. The main difference is that Spine is a one-layer view, whereas
AST is a complete view of a data type. This means that the Spine
type is not useful on its own—it merely provides a way to define
generic functions over other existing types. It should be pointed out
that the one-layer aspect of Spine is a good thing when it comes to
ordinary generic programming, but it does mean that Spine alone
cannot provide a solution to the expression problem. So, although
Spine and AST rely on the same principle for generic constructor
access, they are different in practice, and solve different problems.
Another use of a spine data type is found in Adams’ Scrap Your
Zippers [1], which defines a generic zipper data structure. The
Left data type—similar to our AST—holds the left siblings of the
current position. Just like for AST, its type parameter specifies what
arguments it is missing. The Right data type—reminiscent of our
Args—holds the right siblings of the current position, and its type
parameter specifies what arguments it provides. This similarity
suggests that it might be possible to implement a similar generic
zipper for the AST type.
Outside the Haskell world, an interesting approach to implementing
EDSLs is Modelyze [6]. The Modelyze language is specifically de-
signed to be a host for embedded languages. It has built-in support
for open data types, and such types can be traversed generically by
pattern matching on symbolic applications in much the same way as
our countAdds example (section 3.1). However, generic traversals

9 See slides by Lämmel and Kiselyov “Spin-offs from the Expression
Problem” http://userpages.uni-koblenz.de/∼laemmel/TheEagle/
resources/xproblem2.html.

http://hackage.haskell.org/package/feldspar-language-0.5.0.1
http://userpages.uni-koblenz.de/~laemmel/TheEagle/resources/xproblem2.html
http://userpages.uni-koblenz.de/~laemmel/TheEagle/resources/xproblem2.html

require resorting to dynamic typing (for that particular fragment of
the code), which makes the approach slightly less type-safe than
ours.

11. Discussion
In this paper we have focused on the AST model and the basic prin-
ciples for programming with it. To remain focused, we have left out
many details that are important when implementing an embedded
language but still not fundamental to the underlying syntax model.
Such details include how to deal with variable binding and syntactic
annotations. The SYNTACTIC library has support for these aspects
(with varying degree of stability), but it is important to stress that
all of this extra functionality can be implemented on top of the ex-
isting AST type. So while SYNTACTIC is still developing, the AST
model appears to be rather mature.

One important aspect of extensible syntax that we have not treated
in this paper is the ability to ensure that certain constructs are
present or absent at certain passes in a compiler. Bahr and Hvitved
have demonstrated how to do this with Data Types à la Carte, using
a desugaring transformation as example. The example is directly
transferable to our model.

Our experience with implementing Feldspar has shown that, while
the resulting code is quite readable, developing code using SYN-
TACTIC can be quite hard due to the heavy use of type-level pro-
gramming. In the future, we would like to look into ways of hiding
this complexity, by providing a simpler user interface, and, for ex-
ample, using Template Haskell to generate the tricky code. How-
ever, we do not expect these changes to affect the underlying AST
type.

Our syntax tree encoding imposes a certain run-time overhead
over ordinary data types. Although we have not investigated the
extent of this overhead, we have not noticed any performance
problems due to the encoding in the Feldspar implementation. Still,
the performance impact should be investigated, as it may become
noticeable when dealing with very large programs.

12. Conclusion
Our goal with this work is to make a library of generic building
blocks for implementing embedded languages. Any such attempt is
bound to run into the expression problem, because the library must
provide extensible versions of both syntactic constructs and inter-
pretation functions. The AST model provides a pleasingly simple
and flexible basis for such an extensible library. Its distinguishing
feature is the direct support for generic recursive functions—no ad-
ditional machinery is needed. For extensibility, some extra machin-
ery had to be brought in, but the overhead is quite small compared
to the added benefits. Even though our model comes with conve-
nient recursion schemes, it is by no means restricted to fixed traver-
sals. The user has essentially the same freedom as when program-
ming with ordinary data types to define general recursive traversals.

Acknowledgments
This work has been funded by Ericsson, the Swedish Founda-
tion for Strategic Research (SSF) and the Swedish Basic Research
Agency (Vetenskapsrådet). The author would like to thank the fol-
lowing people for valuable discussions, comments and other in-
put: Jean-Philippe Bernardy, Koen Claessen, Dévai Gergely, Patrik
Jansson, Oleg Kiselyov, Anders Persson, Norman Ramsey, Mary
Sheeran, Josef Svenningsson, Wouter Swierstra and Meng Wang.
The anonymous reviewers also helped improving the paper.

References
[1] M. D. Adams. Scrap your zippers: a generic zipper for heterogeneous

types. In Proceedings of the 6th ACM SIGPLAN workshop on Generic
programming, WGP ’10, pages 13–24. ACM, 2010.

[2] E. Axelsson and M. Sheeran. Feldspar: Application and implementa-
tion. In Lecture Notes of the Central European Functional Program-
ming School, volume 7241 of LNCS. Springer, 2012.

[3] E. Axelsson, K. Claessen, G. Dévai, Z. Horváth, K. Keijzer, B. Ly-
ckegård, A. Persson, M. Sheeran, J. Svenningsson, and A. Vajda.
Feldspar: A domain specific language for digital signal processing
algorithms. In 8th ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE 2010), pages 169–
178. IEEE Computer Society, 2010.

[4] P. Bahr and T. Hvitved. Compositional data types. In Proceedings of
the seventh ACM SIGPLAN workshop on Generic programming, WGP
’11, pages 83–94. ACM, 2011.

[5] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware
Design in Haskell. In ICFP ’98: Proceedings of the Third ACM SIG-
PLAN International Conference on Functional Programming, pages
174–184. ACM, 1998.

[6] D. Broman and J. G. Siek. Modelyze: a gradually typed host language
for embedding equation-based modeling languages. Technical Report
UCB/EECS-2012-173, EECS Department, University of California,
Berkeley, Jun 2012.

[7] J. Carette, O. Kiselyov, and C.-c. Shan. Finally tagless, partially
evaluated: Tagless staged interpreters for simpler typed languages.
Journal of Functional Programming, 19(05):509–543, 2009.

[8] K. Claessen, M. Sheeran, and B. J. Svensson. Expressive array con-
structs in an embedded GPU kernel programming language. In Pro-
ceedings of the 7th workshop on Declarative aspects and applications
of multicore programming, DAMP ’12, pages 21–30. ACM, 2012.

[9] R. Hinze and A. Löh. “Scrap Your Boilerplate” Revolutions. In
Mathematics of Program Construction, volume 4014, pages 180–208.
Springer, 2006.

[10] O. Kiselyov. Typed tagless final interpreters. In Lecture Notes of
the Spring School on Generic and Indexed Programming (to appear).
2010.

[11] R. Lämmel and S. P. Jones. Scrap your boilerplate: a practical design
pattern for generic programming. In Proceedings of the 2003 ACM
SIGPLAN international workshop on Types in languages design and
implementation, TLDI ’03, pages 26–37. ACM, 2003.

[12] R. Lämmel and S. P. Jones. Scrap more boilerplate: reflection, zips,
and generalised casts. In Proceedings of the ninth ACM SIGPLAN in-
ternational conference on Functional programming, ICFP ’04, pages
244–255. ACM, 2004.

[13] R. Lämmel and K. Ostermann. Software extension and integration
with type classes. In Proceedings of the 5th international conference
on Generative programming and component engineering, GPCE ’06,
pages 161–170. ACM, 2006.

[14] J. P. Magalhães, A. Dijkstra, J. Jeuring, and A. Löh. A generic deriving
mechanism for Haskell. In Proceedings of the third ACM Haskell
symposium on Haskell, Haskell ’10, pages 37–48. ACM, 2010.

[15] N. Mitchell and C. Runciman. Uniform boilerplate and list processing.
In Proceedings of the ACM SIGPLAN workshop on Haskell workshop,
Haskell ’07, pages 49–60. ACM, 2007.

[16] A. Persson, E. Axelsson, and J. Svenningsson. Generic monadic
constructs for embedded languages. In 23rd International Symposium
on Implementation and Application of Functional Languages, IFL
2011, volume 7257 of LNCS, 2012.

[17] A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and
B. C. d. S. Oliveira. Comparing libraries for generic programming
in Haskell. In Proceedings of the first ACM SIGPLAN symposium on
Haskell, Haskell ’08, pages 111–122. ACM, 2008.

[18] W. Swierstra. Data types à la carte. Journal of Functional Program-
ming, 18(4):423–436, 2008.

	Introduction
	Modeling abstract syntax
	Exposing the tree structure
	The !AST! model
	Simple interpretation

	Extensible languages
	Functions over extensible languages
	Pattern matching

	Generic traversals
	Generic interpretation
	Finding compositionality
	Case study: Extensible compiler

	Implicit and explicit recursion
	Regaining type-safety
	Typed argument lists
	Type-safe fold

	Controlling the recursion
	Mutually recursive types
	The Syntactic library
	Practical use-case: Feldspar

	Related work
	Discussion
	Conclusion

