
A Generic Abstract Syntax Model for
Embedded Languages

Emil Axelsson
Chalmers University of Technology

ICFP 2012, Copenhagen



Grand plan

Modular, reusable DSL implementations



Grand plan

Modular, reusable DSL implementations



Premise

let DSL = deeply embedded, compiled DSL



Background

Different DSLs often have a lot in common

I Similar constructs (e.g. conditionals, tuples, etc.)

I Similar interpretations/transformations (evaluation, constant
folding, etc.)

Even within the same DSL there are opportunities for reuse

I E.g. many constructs introduce new variables



Background

Haskell is often said to be a good host for embedded DSLs, but. . .

Making a realistic compiled DSL in Haskell is still hard work

I How to deal with variable binding?

I How to deal with sharing?

I Unpacking/packing of product types

I Etc.

These issues are

I nontrivial

I reimplemented over and over again



Background

Haskell is often said to be a good host for embedded DSLs, but. . .

Making a realistic compiled DSL in Haskell is still hard work

I How to deal with variable binding?

I How to deal with sharing?

I Unpacking/packing of product types

I Etc.

These issues are

I nontrivial

I reimplemented over and over again



Problem

Lack of implementation reuse

I ASTs modeled as closed data types

I AST traversals not generic



This work

A generic data type model suitable for ASTs

I Direct support for generic traversals

I Easily combined with existing techniques for composing data
types

I All inside Haskell



The AST model

data AST dom sig
where
Sym :: dom sig → AST dom sig
(:$) :: AST dom (a :→ sig) → AST dom (Full a) → AST dom sig

data Full a
data a :→ b

I Typed abstract syntax modeled as application tree

I Parameterized on symbol domain dom



Example: arithmetic expressions

Reference type

data Expr’ a where
Num’ :: Int → Expr’ Int
Add’ :: Expr’ Int → Expr’ Int → Expr’ Int
Mul’ :: Expr’ Int → Expr’ Int → Expr’ Int

AST encoding

data Arith a where
Num :: Int → Arith (Full Int)
Add :: Arith (Int :→ Int :→ Full Int)
Mul :: Arith (Int :→ Int :→ Full Int)

type ASTF dom a = AST dom (Full a)
type Expr a = ASTF Arith a

I Expr and Expr’ isomorphic



Example: arithmetic expressions

Reference type

data Expr’ a where
Num’ :: Int → Expr’ Int
Add’ :: Expr’ Int → Expr’ Int → Expr’ Int
Mul’ :: Expr’ Int → Expr’ Int → Expr’ Int

AST encoding

data Arith a where
Num :: Int → Arith (Full Int)
Add :: Arith (Int :→ Int :→ Full Int)
Mul :: Arith (Int :→ Int :→ Full Int)

type ASTF dom a = AST dom (Full a)
type Expr a = ASTF Arith a

I Expr and Expr’ isomorphic



Example: arithmetic expressions

Smart constructors

num :: Int → Expr Int
add, mul :: Expr Int → Expr Int → Expr Int

num a = Sym (Num a)
add a b = Sym Add :$ a :$ b
mul a b = Sym Mul :$ a :$ b

1 + 2 ∗ 3

ex1’ :: Expr’ Int
ex1’ = Add’ (Num’ 1) (Mul’ (Num’ 2) (Num’ 3))

ex1 :: Expr Int
ex1 = add (num 1) (mul (num 2) (num 3))



Example: arithmetic expressions

Smart constructors

num :: Int → Expr Int
add, mul :: Expr Int → Expr Int → Expr Int

num a = Sym (Num a)
add a b = Sym Add :$ a :$ b
mul a b = Sym Mul :$ a :$ b

1 + 2 ∗ 3

ex1’ :: Expr’ Int
ex1’ = Add’ (Num’ 1) (Mul’ (Num’ 2) (Num’ 3))

ex1 :: Expr Int
ex1 = add (num 1) (mul (num 2) (num 3))



Example: arithmetic expressions

Evaluation:

eval’ :: Expr’ a → a
eval’ (Num’ a) = a
eval’ (Add’ a b) = eval’ a + eval’ b
eval’ (Mul’ a b) = eval’ a * eval’ b

eval :: Expr a → a
eval (Sym (Num a)) = a
eval (Sym Add :$ a :$ b) = eval a + eval b
eval (Sym Mul :$ a :$ b) = eval a * eval b

I No loss of type-safety



Summary so far

I Recursive GADTs encoded as symbol types

I Small syntactic overhead

I No type safety lost

What have we gained?



Summary so far

I Recursive GADTs encoded as symbol types

I Small syntactic overhead

I No type safety lost

What have we gained?



Key observation

Symbol types are non-recursive!

I AST can be traversed without matching on symbols
(generic traversals)

I Symbol types can be composed
(composable data types)



Generic traversal

Count the number of symbols in an expression

size :: AST dom a → Int
size (Sym _) = 1
size (s :$ a) = size s + size a

I Independent of symbol domain



Generic traversal
Find the free variables in an expression

type VarId = Integer

freeVars :: Binding dom ⇒ AST dom a → Set VarId
freeVars (Sym (viewVar → Just v)) = singleton v
freeVars (Sym (viewBnd → Just v) :$ body) = delete v (freeVars body)
freeVars (Sym _) = empty
freeVars (s :$ a) = freeVars s ‘union‘ freeVars a

class Binding dom
where
viewVar :: dom a → Maybe VarId
viewBnd :: dom (a :→ b) → Maybe VarId

viewVar _ = Nothing
viewBnd _ = Nothing

I Minimal assumptions of symbol domain

I Small encoding overhead

I Close to recursive traversal of ordinary data types



Composable data types

Direct sum of two symbol domains

data (dom1 :+: dom2) a
where

InjL :: dom1 a → (dom1 :+: dom2) a
InjR :: dom2 a → (dom1 :+: dom2) a

Increases overhead

type Expr a = ASTF (A :+: B :+: C :+: Arith :+: D) a

add :: Expr Int → Expr Int → Expr Int
add a b = Sym (InjR (InjR (InjR (InjL Add)))) :$ a :$ b



Composable data types

Direct sum of two symbol domains

data (dom1 :+: dom2) a
where

InjL :: dom1 a → (dom1 :+: dom2) a
InjR :: dom2 a → (dom1 :+: dom2) a

Increases overhead

type Expr a = ASTF (A :+: B :+: C :+: Arith :+: D) a

add :: Expr Int → Expr Int → Expr Int
add a b = Sym (InjR (InjR (InjR (InjL Add)))) :$ a :$ b



Composable data types

Solution: automating injections

num :: (Arith :<: dom) ⇒ Int → ASTF dom Int
add :: (Arith :<: dom) ⇒ ASTF dom Int → ASTF dom Int → ASTF dom Int
mul :: (Arith :<: dom) ⇒ ASTF dom Int → ASTF dom Int → ASTF dom Int

num a = inj (Num a)
add a b = inj Add :$ a :$ b
mul a b = inj Mul :$ a :$ b

I (:+:), (:<:) and inj borrowed from Data Types à la Carte
[Swierstra, 2008]

I Also a projection function prj used for pattern matching



Extend Arith with variable binding

New constructs:

data Lambda a
where
Var :: VarId → Lambda (Full a)
Lam :: VarId → Lambda (b :→ Full (a → b))

var :: (Lambda :<: dom) ⇒ VarId → ASTF dom a
var v = inj (Var v)

lam :: (Lambda :<: dom) ⇒ VarId → ASTF dom b → ASTF dom (a → b)
lam v a = inj (Lam v) :$ a

Example: λv0 → v1 + (v0 * v2)

ex2 :: ASTF (Arith :+: Lambda) (Int → Int)
ex2 = lam 0 $ add (var 1) (mul (var 0) (var 2))



Extend Arith with variable binding

New constructs:

data Lambda a
where
Var :: VarId → Lambda (Full a)
Lam :: VarId → Lambda (b :→ Full (a → b))

var :: (Lambda :<: dom) ⇒ VarId → ASTF dom a
var v = inj (Var v)

lam :: (Lambda :<: dom) ⇒ VarId → ASTF dom b → ASTF dom (a → b)
lam v a = inj (Lam v) :$ a

Example: λv0 → v1 + (v0 * v2)

ex2 :: ASTF (Arith :+: Lambda) (Int → Int)
ex2 = lam 0 $ add (var 1) (mul (var 0) (var 2))



Give meaning to the symbols

Explain which symbols are variables or binders

instance Binding Arith

instance (Binding dom1, Binding dom2) ⇒ Binding (dom1 :+: dom2)
where
viewVar (InjL s) = viewVar s
viewVar (InjR s) = viewVar s
viewBnd (InjL s) = viewBnd s
viewBnd (InjR s) = viewBnd s

instance Binding Lambda
where
viewVar (Var v) = Just v
viewVar _ = Nothing
viewBnd (Lam v) = Just v



Generic traversal of composable AST

Example: λv0 → v1 + (v0 * v2)

ex2 :: ASTF (Arith :+: Lambda) (Int → Int)
ex2 = lam 0 $ add (var 1) (mul (var 0) (var 2))

*Main> freeVars ex2
fromList [1,2]



The Syntactic library

AST model available in the Syntactic library:

cabal install syntactic

I Lots of utility functions

I Recursion schemes (fold, everywhereTop, etc.)

I A collection of common language constructs

I A collection of interpretations/transformations (evaluation,
rendering, CSE, etc.)

I Utilities for host language interaction

Practical use: the Feldspar EDSL built upon Syntactic

http://hackage.haskell.org/package/syntactic
http://hackage.haskell.org/package/feldspar-language


Summary

AST model a good foundation for a general EDSL building library
(Syntactic)

I Small encoding overhead

I Generic traversals out of the box

I Mixes well with sum types for compositional data types

I Traversals in familiar recursive style

http://hackage.haskell.org/package/syntactic


Acknowledgements

This work was funded by

I Ericsson

I The Swedish Foundation for Strategic Research (SSF)

I Swedish Basic Research Agency (Vetenskapsr̊adet)


