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Premise

let DSL = deeply embedded, compiled DSL



Background

Different DSLs often have a lot in common

I Similar constructs (e.g. conditionals, tuples, etc.)

I Similar interpretations/transformations (evaluation, constant
folding, etc.)

Even within the same DSL there are opportunities for reuse

I E.g. many constructs introduce new variables



Background

Haskell is often said to be a good host for embedded DSLs, but. . .

Making a realistic compiled DSL in Haskell is still hard work

I How to deal with variable binding?

I How to deal with sharing?

I Unpacking/packing of product types

I Etc.

These issues are

I nontrivial

I reimplemented over and over again
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Problem

Lack of implementation reuse

I ASTs modeled as closed data types

I AST traversals not generic



This work

A generic data type model suitable for ASTs

I Direct support for generic traversals

I Easily combined with existing techniques for composing data
types

I All inside Haskell



The AST model

data AST dom sig
where
Sym :: dom sig → AST dom sig
(:$) :: AST dom (a :→ sig) → AST dom (Full a) → AST dom sig

data Full a
data a :→ b

I Typed abstract syntax modeled as application tree

I Parameterized on symbol domain dom



Example: arithmetic expressions

Reference type

data Expr’ a where
Num’ :: Int → Expr’ Int
Add’ :: Expr’ Int → Expr’ Int → Expr’ Int
Mul’ :: Expr’ Int → Expr’ Int → Expr’ Int

AST encoding

data Arith a where
Num :: Int → Arith (Full Int)
Add :: Arith (Int :→ Int :→ Full Int)
Mul :: Arith (Int :→ Int :→ Full Int)

type ASTF dom a = AST dom (Full a)
type Expr a = ASTF Arith a

I Expr and Expr’ isomorphic
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Example: arithmetic expressions

Smart constructors

num :: Int → Expr Int
add, mul :: Expr Int → Expr Int → Expr Int

num a = Sym (Num a)
add a b = Sym Add :$ a :$ b
mul a b = Sym Mul :$ a :$ b

1 + 2 ∗ 3

ex1’ :: Expr’ Int
ex1’ = Add’ (Num’ 1) (Mul’ (Num’ 2) (Num’ 3))

ex1 :: Expr Int
ex1 = add (num 1) (mul (num 2) (num 3))
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Example: arithmetic expressions

Evaluation:

eval’ :: Expr’ a → a
eval’ (Num’ a) = a
eval’ (Add’ a b) = eval’ a + eval’ b
eval’ (Mul’ a b) = eval’ a * eval’ b

eval :: Expr a → a
eval (Sym (Num a)) = a
eval (Sym Add :$ a :$ b) = eval a + eval b
eval (Sym Mul :$ a :$ b) = eval a * eval b

I No loss of type-safety



Summary so far

I Recursive GADTs encoded as symbol types

I Small syntactic overhead

I No type safety lost

What have we gained?
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Key observation

Symbol types are non-recursive!

I AST can be traversed without matching on symbols
(generic traversals)

I Symbol types can be composed
(composable data types)



Generic traversal

Count the number of symbols in an expression

size :: AST dom a → Int
size (Sym _) = 1
size (s :$ a) = size s + size a

I Independent of symbol domain



Generic traversal
Find the free variables in an expression

type VarId = Integer

freeVars :: Binding dom ⇒ AST dom a → Set VarId
freeVars (Sym (viewVar → Just v)) = singleton v
freeVars (Sym (viewBnd → Just v) :$ body) = delete v (freeVars body)
freeVars (Sym _) = empty
freeVars (s :$ a) = freeVars s ‘union‘ freeVars a

class Binding dom
where
viewVar :: dom a → Maybe VarId
viewBnd :: dom (a :→ b) → Maybe VarId

viewVar _ = Nothing
viewBnd _ = Nothing

I Minimal assumptions of symbol domain

I Small encoding overhead

I Close to recursive traversal of ordinary data types



Composable data types

Direct sum of two symbol domains

data (dom1 :+: dom2) a
where

InjL :: dom1 a → (dom1 :+: dom2) a
InjR :: dom2 a → (dom1 :+: dom2) a

Increases overhead

type Expr a = ASTF (A :+: B :+: C :+: Arith :+: D) a

add :: Expr Int → Expr Int → Expr Int
add a b = Sym (InjR (InjR (InjR (InjL Add)))) :$ a :$ b
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Composable data types

Solution: automating injections

num :: (Arith :<: dom) ⇒ Int → ASTF dom Int
add :: (Arith :<: dom) ⇒ ASTF dom Int → ASTF dom Int → ASTF dom Int
mul :: (Arith :<: dom) ⇒ ASTF dom Int → ASTF dom Int → ASTF dom Int

num a = inj (Num a)
add a b = inj Add :$ a :$ b
mul a b = inj Mul :$ a :$ b

I (:+:), (:<:) and inj borrowed from Data Types à la Carte
[Swierstra, 2008]

I Also a projection function prj used for pattern matching



Extend Arith with variable binding

New constructs:

data Lambda a
where
Var :: VarId → Lambda (Full a)
Lam :: VarId → Lambda (b :→ Full (a → b))

var :: (Lambda :<: dom) ⇒ VarId → ASTF dom a
var v = inj (Var v)

lam :: (Lambda :<: dom) ⇒ VarId → ASTF dom b → ASTF dom (a → b)
lam v a = inj (Lam v) :$ a

Example: λv0 → v1 + (v0 * v2)

ex2 :: ASTF (Arith :+: Lambda) (Int → Int)
ex2 = lam 0 $ add (var 1) (mul (var 0) (var 2))
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Give meaning to the symbols

Explain which symbols are variables or binders

instance Binding Arith

instance (Binding dom1, Binding dom2) ⇒ Binding (dom1 :+: dom2)
where
viewVar (InjL s) = viewVar s
viewVar (InjR s) = viewVar s
viewBnd (InjL s) = viewBnd s
viewBnd (InjR s) = viewBnd s

instance Binding Lambda
where
viewVar (Var v) = Just v
viewVar _ = Nothing
viewBnd (Lam v) = Just v



Generic traversal of composable AST

Example: λv0 → v1 + (v0 * v2)

ex2 :: ASTF (Arith :+: Lambda) (Int → Int)
ex2 = lam 0 $ add (var 1) (mul (var 0) (var 2))

*Main> freeVars ex2
fromList [1,2]



The Syntactic library

AST model available in the Syntactic library:

cabal install syntactic

I Lots of utility functions

I Recursion schemes (fold, everywhereTop, etc.)

I A collection of common language constructs

I A collection of interpretations/transformations (evaluation,
rendering, CSE, etc.)

I Utilities for host language interaction

Practical use: the Feldspar EDSL built upon Syntactic

http://hackage.haskell.org/package/syntactic
http://hackage.haskell.org/package/feldspar-language


Summary

AST model a good foundation for a general EDSL building library
(Syntactic)

I Small encoding overhead

I Generic traversals out of the box

I Mixes well with sum types for compositional data types

I Traversals in familiar recursive style

http://hackage.haskell.org/package/syntactic
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